
Case Studies Phil Storey

Page 1

Duration Client Situation and Outcome

5 days Airline New automated bag-drop units (ABDs) were spending 7 seconds (and often
much longer) keeping the bag stationary for unexplained reasons. There
were three vendors involved, each with their own software running inside the
ABD.

Initial packet captures taken at the local switch provided data for a single
ABD and showed three distinct phases during the time in question. Some
“log” traffic generated by one of the vendors was used to identify these
phases. The middle phase (of 3.5 seconds but often longer) was easily
identified as a single HTTP POST to an application server located in an
airline data centre.

Each vendor was then asked to explain what their code was doing during the
other two phases. Given this narrower time to investigate, they were able to
find inefficiencies that could be improved.

Packet captures taken at the web/application server showed that 98% of the
duration of the ABD’s HTTP POST was due to 13 back-end API calls to
another server in the USA - which used HTTPS. The round trip time for each
of these was more than 210 ms.

Further analysis found that 6 round trips were due to a HTTP “feature” that
happens to be enabled by default in Microsoft’s .Net. There were, in fact, only
7 real API calls.

Simply adding a line in a configuration file eliminated these 6 wasted round
trips, saving 1.2 seconds for every bag drop. Further, it eliminated 7 or 8
round trips (1.4 to 1.7 seconds) from other kiosk and human operated check-
in functions too.

The variability of the timings of the POSTs was due to packet losses in the
network between Australia and the USA.

6 days Large
Service
Provider

Performance of file transfers from Sydney to China, over an Internet VPN,
was very poor.

Analysis of packet captures taken from both ends showed that the IPsec
packets were going out-of-order enough to trigger the TCP “Congestion
Avoidance” mechanism – which resulted in very slow data transfers.

It was thought that “The Internet” must be the problem, but over an elapsed
period of a few weeks of questioning the network people and getting captures
in different locations along the path, it was eventually found that the OOO
packets were created in the internal Sydney network by an overloaded IPS
device.

That device was configured to not “inspect” this particular IPsec traffic flow,
resulting in performance moving into line with that expected – given the 50
Mbps bandwidth limit at the China end.

2 days University Performance load testing of a newly purchased web application produced
“failed” transactions at the point of full load. The error message was “Bad
Request”.

Analysis identified that the load generator was issuing good requests but the
application (in an Apache Tomcat server) was not correctly handling
database connection pooling. The failure occurred only when the number of
concurrent TCP/IP connections reached the supposed maximum.

The fault lay squarely with the application developer and no faults were found
in any other components (load balancers, network, etc.)

A summary report and supporting artefacts were created to present to the
vendor, including details of ~300,000 transactions, database connections,
exact point of failure, transaction content details, etc.)

Case Studies Phil Storey

Page 2

Duration Client Situation and Outcome

5 days State
Government

A new application performed very badly when it was tested under the
assumed maximum load.

Packet captures were taken on a user PC while various application functions
were exercised. Simultaneously, packet captures were taken on the Oracle
database server and on both sides of an intermediate Check Point firewall.
This was done for both no-load and heavy-load situations.

Measurements of the packet transit times between each of the capture points
showed that the performance degradation was entirely due to the firewall.
Transit times through the firewall increased from the no-load sub-millisecond
to an average 30 ms and maximum 80 ms (each way) when under load.

The firewall was upgraded in order to cope with the expected loads.

Also, a little known Check Point and Oracle performance issue was
discovered and remediated.

4 days Federal
Government

Performance of reports from a SAS system (with Teradata backend
database) was extremely variable.

Packet captures were taken on a user PC while various reports were run.

The analysis revealed that the SAS system was retrieving large numbers of
rows of data (up to 200,000) from the backend database – but was doing it
just one row at a time.

The analysis also provided a clean bill of health for the WAN (which was
initially strongly suspected by some of the support people).

4 days Airline Performance of web browsing for international users at two sites was very
poor. Stopwatch measurements taken when a PC used the official proxy
servers (versus going directly to the Internet without a proxy) showed a
significant performance difference.

Naturally, the initial thoughts were that the proxy servers (provided by an
external vendor) were at fault. The support staff were proposing to change
proxy vendors.

However, analysis of packet captures taken on the user’s PC during the test
runs showed that the degradation was actually caused by the way the
browser handled TCP/IP connections to the proxies.

Changing proxies would not have achieved any improvement, unless
changed to a different “style” such as transparent proxies.

7 days State
Government

A newly purchased application was not performing as well as desired or
expected.

Packet captures were taken on a user PC while various application functions
were exercised. The exact transaction/network/server behaviours for each
function were measured and plotted.

The major cause of poor performance was the way the application accessed
the Oracle database. Data was requested in very small chunks, resulting in
tens of thousands of unnecessary network round-trips.

Spreadsheets listing the exact SQL statements involved with each function
(each with the exact breakdown of client/network/server timings) was
provided to the vendor. They were able to modify their application code to
dramatically improve efficiency, significantly improving performance.

Case Studies Phil Storey

Page 3

Duration Client Situation and Outcome

1 day State
Government

A newly purchased application was still not performing as well as expected.

It was found that 75% of the time taken for each user function was actually
inside the user PC (that is, related to the internal PC application).

Spreadsheets and charts plotting the exact network activities involved with
each function (with the exact breakdown of client/network/server timings per
application transaction) were provided to the vendor. Any improvements
would require application code modifications.

The network and server infrastructure were found “not guilty” of any
performance problems.

9 days Large
Service
Provider

Credit card transactions flowing via MQ between mainframes at a major bank
and a service provider were experiencing frequent delays of up to a second.
Although only 1% of transactions were affected, the total delays added up to
12% (7 minutes per hour of no activity).

The provider staff and their customer had spent months trying to identify the
source of the problem – with no success.

Packet captures taken with NetScouts at various points in the network path
revealed that something on the customer’s internal network was delaying
packets by 10ms. Due to a combination of circumstances, including out-of-
order packets, this was causing packet drops and large retransmission
delays.

Several possible fixes and workarounds were recommended. A change to the
mainframe TCP settings removed the gaps, improved performance – but
more importantly, gave the bank more confidence in the system moving into
the heavy Christmas period.

3 days Telco Sydney users of an internal SAP application (with server in Asia) experienced
occasional failed logons. This did not happen to users outside Australia.

The problem had existed for several weeks.

Analysis of packet captures taken at a user PC in Sydney revealed that a
WAN accelerator at the Sydney end of the international WAN was improperly
responding to HTTP Authentication requests.

Three main alternatives were recommended.

3 days Network
Provider

User logons to a new application deployed to users were normally 10-15
seconds but were often taking over 2 minutes (and regularly failing). Three
different vendors were involved in providing the application, server and
associated network components and were all “pointing the finger” at each
other.

Packet captures in 3 locations (user PC, vendor hosted server in different city
and WAN provider router) revealed that the “trigger” event was occasional
packet losses in the customer’s own network (which was easily fixed).

Arguably, the real cause was the low bandwidth WAN link, coupled with “bad”
behaviour in the customer’s own Cisco ASA firewall as well as behaviour in
the application vendor’s F5 load balancer. None of these behaviours were
“bad” when taken individually – but became so when combined.

Case Studies Phil Storey

Page 4

Duration Client Situation and Outcome

3 days Large
Service
Provider

The provider operated the outgoing Internet proxy environment for a large
bank. The bank wanted to implement “per user” authentication mechanism
and installed a Bluecoat “AAA” server coupled to a dedicated AD server.

However, whenever the AAA function was enabled, Internet web-pages
would take up to 30 seconds to load.

The analysis of 11 GB of traffic revealed that the AAA-to-AD connection was
only handling 2 transactions at once, even though many thousands of
requests were arriving from the proxies every second. This resulted in an
internal AAA queue length of over 30 seconds.

This hinted at a process/thread limit in either the AAA or AD server – and it
was subsequently found that the AAA configuration file “Bluecoat.ini”
contained the setting “MaxThreads = 2”. Changing this to “5” put
performance back to normal

This saved the unnecessary $250,000 expense that was budgeted for a
bigger/faster proxy server farm.

Past 8
years

Various The general situation is a “tricky”, intermittent problem that numerous
vendors and teams are involved in (and none can find any problem in their
own area). The problem drags on for weeks or months until eventually I’m
called in to identify the exact problem behaviours within days or sometimes
just hours.

Example
Reports

 LinkedIn Posts / Blogs:

https://www.linkedin.com/pulse/sometimes-we-need-packet-captures-more-
than-two-locations-storey

https://www.linkedin.com/pulse/my-solution-sharkfest-2015-megalodon-
challenge-philip-storey

YouTube Channel:

https://www.youtube.com/c/NetworkDetective

https://www.linkedin.com/pulse/sometimes-we-need-packet-captures-more-than-two-locations-storey
https://www.linkedin.com/pulse/sometimes-we-need-packet-captures-more-than-two-locations-storey
https://www.linkedin.com/pulse/my-solution-sharkfest-2015-megalodon-challenge-philip-storey
https://www.linkedin.com/pulse/my-solution-sharkfest-2015-megalodon-challenge-philip-storey
https://www.youtube.com/c/NetworkDetective

