My Solution
to the SharkFest 2015 “Megalodon Challenge”

Overall Trans Times, Concurrent Connections & Event Rates

Response-Time Seconds

80, Servers . 250 35 |
10.0.010 Transactions .
19216811 Transaction affected by a network abnormality - |
Open Conn: Synch W3cale: 8 SelAck M351460—-Reset ' I
70 1 Event Rates ® Open Conn: Synch W3cale: 8 Sel4ck MSS:1460—= ignorad L3
—Sener sequence gaps + Cpen Conn: Synch W3cale: 8 SelAck M35:1460—-Ack Synch M35:1460 SelAck - Ack |
—server recvd selective acks - % Open Conn: Synch V ”I{Sl:ale 8 SelAck M3S:1460— - Ack L 200 \
60 client recvd selective acks I
—sernver pkis out of order " | | o5 !
—client sequence gaps K Unsuccessful connections . |
50 5 !
L 150 ©
= p20
— (]
= (k]
40 & =
= a
55
100 3 i
304 o LLI
(=]
]
10
20 4
- 50
10 -3
—+H e
+o/He Ho-clesm-oo |
] 0 Lo
01:50:00 01:51:00 01:52:00 01:53:00 01:54:00 01:55:00 01:56:00 01:57:00
MetDiats Chart of 10:55 17-Aug (Web_Application_Server) Wednesday 19-Mov 38,153

Megalodon Challenge - My Solution Philip Storey 1

Megalodon Challenge

This is an analysis of the network and application activity involved in the “Megalodon
Challenge”, distributed at SharkFest 2015 by Jasper Bongertz.

https://blog.packet-foo.com/2015/07/the-megalodon-challenge/

The observations, commentary and recommendations are presented first.

The supporting evidence is provided in subsequent slides - for readers who would like
to follow along with the detailed analysis.

First the answer to the question posed in the Challenge.

“At a certain point in time during the test there would be unanswered page requests, but it was unclear if it
was a network problem, an application framework problem, something in the application logic itself or maybe
even something else entirely.”

After that, an extended analysis to examine the server, application and network

bottlenecks in the two flows.

There are numerous behaviours that defy explanation. For now, all we can do is report the observations and
suggest potential alternative reasons for the behaviours.

This analysis was performed by Philip Storey, a freelance network & application performance analyst and troubleshooter living in Sydney,
Australia. Contact Phil at: Phil@NetworkDetective.com.au

Megalodon Challenge - My Solution Philip Storey

https://blog.packet-foo.com/2015/07/the-megalodon-challenge/
mailto:Phil@NetworkDetective.com.au?subject=Analysis with NetData-Pro

Megalodon Challenge

This is a very interesting case study, containing many elements and application behaviours that
are difficult to explain.

The tool used to perform the analysis is “NetData-Pro”. Its graphical visualisation capabilities —
combining many different attributes superimposed on one chart - make interesting behaviours
“eye-catching”. This allows problems to be identified much more quickly.

All the data can be visualised at once, even with multi-GB capture files. Each of the capture files
here are about 2 GB each.

The author has been a user of NetData-Pro for around 6 years.

The capture files had been modified by “TraceWrangler” — an excellent free utility that can perform many
“sanitisation” functions. Here it had substituted IP addresses, MAC addresses and replaced the payload content
with the repeated string, “Payload Removed!”.

Find it at - https://www.tracewrangler.com

Even with no real application payload data, we can still observe several application behaviours
that are quite intriguing.

“NetData-Pro” is a commercial product, from Measure IT Pty Ltd in Sydney (Australia).
The Principal is Bob Brownell: Bob@NetData-Pro.com

Diagram (As Provided)

Added the Load Generator and flows based on the observations. As we’ll see later, it is very unlikely that
Tap-B is actually where it is drawn here.

Load Generator
172.28.190.238

Web Server connects

to the Content Server

to retrieve much of the
content.

nterprise Level
Switch

Capture Device

Web Application
Server
Win2012R2
192.168.1.1

Expect only traffic with:-

- Source = 192.168.1.1

- Destination = 192.168.1.1
- Broadcast

To be captured here.

Megalodon Challenge - My Solution

Enterprise Le
Switch

|-

Capture Device

Load Balancer
(Transparent)

Expect only traffic with:-
- Source =10.0.0.1

- Destination = 10.0.0.1
- Broadcast

To be captured here.

Content Server
Win2012R2
10.0.0.10

Philip Storey

Observations

1) TraceWrangler had been used to sanitise the packets and substitute the payloads.
(This means that we couldn’t use the powerful layer-7 analysis functions of NetData. We nevertheless are
able to discover details about server performance by using the generic “request/response” decoder to
identify individual transaction timings and categorise them by request/response sizes).

2) It appeared that there were 4 load test runs, each time “doubling” the load.

3) There are many packet losses consistently throughout the capture period (in regular time
periods).

4) There are regular instances of Syn and/or Syn-Ack packets going missing.

5) All the losses (in both directions) occurred between the capture tap(s) and the Content Server.

6) There are two different types of packet loss behaviour, one consistently throughout the four
test runs and another that appears only under heavier loads.

7) There are more frequent instances of Syn/Syn-Ack losses during the fourth test run.

8) The answer to the Challenge is that failed connections occurred during the fourth, biggest
volume, test run.
* The Content Server terminated 11 connection requests by issuing a Reset after a minute.
* The server also “ignored” 47 connection requests, i.e., there was no response to the repeated Syns.

9) The Content Server appears to begin to suffer “stress” during the third test run and then more
so during the fourth (heavier) test run.
This stress appears to be related to a limit on the server application availability to take
requests off the incoming TCP stack.

Performance Observations

10) There are constant, regular periods of 5 seconds where 2.5 secs have packet losses, then 2.5
of no losses. This repeats for the whole 10 minute capture.

* All connection setups during the “lossy” 2.5 sec periods take longer than those in the “non-lossy” 2.5
sec periods - even those that are not affected by lost packets.

* Sothe same device may be responsible for both behaviours.
* The lost data packets are of all payload or message sizes.

11) There is a different type of packet loss period during the fourth test run. Here, there are
instances of Syn/Syn-Ack losses that aren’t within the other “lossy” 2.5 sec periods.

* These are the instances that cause the failed connections and transactions.
* Their frequency of occurrence ramps up “exponentially” at the end of the fourth test run.
* There is not an equivalent increase in data packet losses.

12) The first transaction in every connection is a 127-byte request with 3031-byte response
(which has the flavour of an SSL handshake).
* These take progressively longer during test runs (with a minimum of 0.5 secs in the fourth test run).

* Probably because the Content Server application can’t take the requests off the inbound TCP queue
quickly enough - due to some form of load/stress.

* Improving these transactions will have the biggest effect on the overall performance.

13) The second transaction in every connection is a 158-byte request with 51-byte response
(which has the flavour of an SSL cypher exchange).
* These are usually very fast, but many always take ~300 ms and ~500 ms of server “thinking” time.
* These times are not load related — as they occur during all four tests.
* These should be examined because a third or half a second is significant.

* Only 128 out of 36472 return the 51 bytes in one packet. 36344 deliver 2 packets of 6+45, often with
large times between those 2 packets.

Performance Observations (Cont.)

14) There are regular “gap” periods of 0.3 seconds, every 4.5 seconds or so (unrelated to the
2.5/5 sec “lossy” periods) where BOTH the Web Server and Content Server applications seem
to stop communicating or responding.

* The only packets in either direction during these 0.3 sec “gaps” are TCP (Acks or retransmissions) -
not application data or new connection requests.

* If it was within just one server, we might call it “garbage collection” or similar. | have no explanation
for these periods to be synchronised between two different servers.

15) The failed connection requests do not appear to be related to client ephemeral port
“recycling” — even though, due the relatively high rate of new connections, they are reused
every 170 seconds or so. The Web Server restarts at 49155 — which is interesting because the
MS Windows “standard” has been 49152 since 2008, implying that it has been slightly
modified in this environment.

16) The responses from the Content Server are not delivered with maximum efficiency (i.e., as a
stream of full sized packets). Rather, the flows consist of some “blocks” of good flows, but
interspersed with many and various smaller packets. This occurs even in the lighter test runs.

This could be due to the application being unable to keep up in delivering data to the outgoing TCP stack.
Or perhaps there is another device in the path that is causing this? Packets of size 29 bytes are very
common. Because of this, NetData’s generic “request/response” decoder has categorised transactions

based on the packets flowing each way. The large 52 KB responses look like this for example:

Request: blk[154]; blk[1284] — (Response) blk[4xx]; blk[2x] (5); blk[1xxxx]; blk[1xxxx]; blk[2x] (5); blk[1xxxx]; blk[1xxx];
blk[2x]; blk[3x]; blk[2x]

Which means that the request was in 2 packets of [154]+[1284] and, in this case, the response totalling 52590 bytes came
back in packets of [445]; 5 x [29]; a large block of [17128] {11 x [1460] + [1068]}; another [15708]; 5 x [29]; [17520]; [1404];
[29]; [37]; [29].

Thus, the thousands of common 52 KB and 983 byte responses have been categorised separately, even though they are
likely to be the same. The colour groupings in the charts were created by colour coding the transactions only by their
request signatures.

Megalodon Challenge - My Solution Philip Storey

Performance Observations (Cont.)

17) The TCP connections from the Load Generator to the Web Server ramp up to the respective
maximums very quickly (forming an almost vertical line for the “concurrent connections”
chart).

However, the connections from the Web Server to the Content Server step up more slowly,
about 1 extra connection per second.

The effect of this is most apparent in test run 4, where the 200 connections from the Load
Generator are initiated all at once (with the respective 200 transaction requests). The 200
requests are queued up and it takes the Web Server 12-18 seconds to work its way through
them all. This is because the Web Server begins with only 100 or so connections to the
Content Server — hence can only handle 100 back-end transactions in parallel. It takes ~100
seconds before the connections have ramped up to match.

Could this be due the Web Server making a decision to increase its available application
threads only once every second? Would the performance be improved if the Web Server
initiated more connections sooner?

18) The vast majority of Load Generator transactions (into the Web Server) are a 325+ byte
request with a response of 286,650 bytes.
These keep coming as fast as they can. There are no randomised gaps that might simulate
real users.
The queuing effect of these transactions is much more significant in the fourth test run.

19) The packet losses in these flows all occur between the tap(s) and the Load Generator. The
regular 5 second “loss” + “no loss” periods are not apparent in these flows. The losses are far
fewer in number and seem more random.

Final Observation: Tap Locations

20) The location of the tap for the capture file named “Content Server” does not appear to be in
the location described in the Megalodon Challenge information.

Based on the client-server flows, MAC address (even though they were “Wrangled”), TTL
values and flows, the Tap-B “Content Server” location appears to have been on the same TCP
segment as the “Web Server” (which I've called Tap-A). Tap-B captured all the same client-
server flows as Tap-A.

The two capture files are very similar — and could almost be mistaken as being identical — but
they did contain minor differences.
— Some packets common to both captures had ever-so-slightly timing differences.

— There are some packets that are in one capture but not the other (mostly at the beginning and end —
so likely due to Wireshark start-stop timing differences).

— Where these packets are missing in either capture file, they appear to have been dropped by
Wireshark rather than actually lost in the network.

To save this PPT file becoming overly large, the evidence for this is included in a separate
report, “Megalodon-Challenge-Comparing-The-Two-Captures”.

The diagram on the next slide is my guess as to where Tap-B might have been located.
This is also assuming that the diagram as originally provided was accurate. It is possible that the Load
Balancer is not in that exact location.

Challenge: The Answer

The 47 “Ignored” connections and 11 “Reset” connections would result in failed transactions
from the Web Server. These are the cause of the observed problem as stated in the
“Challenge”:

“At a certain point in time, the web application server would not get a reply for some of its
requests anymore.”

Those connections terminate abnormally because the client Syn packets, server Syn-Ack packets
and client Acks get lost somewhere between the capture points and the Content Server.

The evidence for this conclusion is presented in the “Evidence Trail” in the following slides.

Packet losses are here.

Or here.

Enterprise Level
Switch

Load Balancer ~ Firewall ??
(Transparent)

Capture Device

Web Application Content Server
Server Win2012R2
Win2012R2 10.0.0.10
192.168.1.1

Megalodon Challenge - My Solution Philip Storey

10

Recommendations

1) The source of the packet losses be investigated and fixed.

Both kinds of losses need to be identified. The reported problem though, is due to the Syn/Syn-Ack losses
which are load related.

Candidates for the cause of the losses could be:

* Load Balancer (if in the path from Web to Content Server).

* Afirewall (if there is one in the Web to Content Server path).

e Switches (e.g., duplex mismatches).

* Faulty TCP settings in the Content Server (e.g., duplex mismatch).
* Faulty NIC card(s) in the Content Server.

* Faulty Ethernet Cables.

* Internal Content Server resource limits (since load plays a part).

2) The exact network topology be determined.

All devices in the Web Server to Content Server path need to be identified so that they can be examined so see
if they play a part in the observed behaviours. Simultaneous packet captures in more locations then need to be
performed in order to narrow down the “suspects” and eliminate each component as the cause of the problem
behaviours.

In a standard multi-tier architecture, load balancers and firewalls are likely to be in this path.

Megalodon Challenge - My Solution Philip Storey 11

Recommendations (Cont.)

3) That a capture be taken at the Content Server.

The capture that was supposedly taken by Tap-B at the Content Server does not appear to be correctly located.
It seems to have been taken on the same VLAN/segment as the Web Server capture.

A capture here would prove whether or not the observed packet losses are due to the Content Server.

4) Increase the range of ephemeral ports used by the Web Server to connect to the
Content Server.

The ports begin at 49155 and are being “recycled” in just over 3 minutes due to the large number of short
running connections. If the starting number was reduced to nearer to 20000, the duration between “recycles”
would stretch out to 6 minute

5) Investigate the Content Server’s application behaviour of breaking up the responses
into very small packets.

For example, why would the vast majority of the Content Server’s second transaction type return a 51 byte
response as two packets of [6] + [45] rather than a single packet of [51]? Finding and fixing this behaviour
could have a significant impact of the overall performance of the system.

The starting point for this investigation would be to look at the application’s TCP output buffering settings.

Megalodon Challenge - My Solution Philip Storey 12

Evidence Trail

The following slides provide the evidence of the observed behaviours.

1) First we look at all the client-server connection pairs within the packet capture files.
We can get a high level view of flow volumes, retransmission rates and other
statistics for both directions of each flow.

2) Then we look at all the actual connection setups and other transactions, all at once
on a single chart. Here the “problem” behaviours stand out. We also get a
visualisation of the whole 7 minutes where the four different test runs are clearly
visible and separated. Visual correlations can be observed between the Load
Generator traffic and the Web-to-Content Server traffic.

3) We then “zoom-in” to investigate the troublesome connections. We can use
“Packet Timing” views to see the packet behaviours in a time-of-day setting.

4) By choosing the right chart overlays, we can then observe the packet loss
behaviours and how they correlate (or don’t) with other behaviours.
This is where some surprising behaviours are observed!

Overview - Dialogues (Web Server Capture)

This is a high level view
of the clients (on the
left) and servers (on
the right).

Line thickness relates
to traffic volumes.

Line colour indicates
Packet Retransmission
rates in each direction.

We clearly see the two
pairs of three servers
with the traffic that we
are interested in.

This is the Web Server
acting as a server,
receiving connections.

This is the Web Server
acting as a client,
initiating connections.

Megalodon Challenge - My Solution

9 Clients 17 Dialogues 13 Services | Packet

fram all connections retransm.

intiers 19-Mov 01:48:46 2482 - 01:56:42 2704 raies 0,85
Total 36.60 Mbps = 2.43 Mbps (cit) + 3417 Mbps (swr) 05

10114117 230

0.3
0.2%
192.168.1.1:443 (HTTFS? 0.1%
~ 102.168.1.1.445 (SMBITG 0.0%

192.168.1.1:3389 (TCP)
192.168.1.1:10050 (TCP
192.168.1.1:51623 (TCP)
192.168.1.1:57197 (DNS/UDP)
192.168.1.1:58120 (DN3/UDF
192.168.1.1:61008 (DNS/UDF)
192.168.1.1:61451 (DMNS/UDF)

10.13.41.195

172.28.190.238

192.168.1.230
[(110.0.010:5433 (TCP)

1921681241 =~

192 1681 10.13.41.195:8014 (TCP)

192.168.1.99

152.29.200.38:443 (HTTPS?TCF)

192.168.195 166

— 170.245141.251:443 (HTTPSYTCF)

19216811 0=

s o= Largest flow

Philip Storey

Client traffic is plotted above server traffic [N 2573 Mbps

14

Overview - Dialogues (Web Server Capture)

Hovering on the lines
produces these popups,
providing more details of
the traffic flows.

From this we get the
idea that lost packets are
likely to play a part in our
“troublesome”
behaviours.

Lots of Syn & data
retransmissions from
the Web Server to
Content Server.

Lots of “gaps” in the

9 Clients 17 Dialogues 13 Services F'atch:et
fram all connections retransm.
intiers 19-Maov 01:49:46.2492 - 01:56:42 2704 rates -
Total 36.60 Mbps = 2.43 Mbps (cit) + 3417 Mbps (svr) e
0.4%
0.3%
10114117230 oz
1892 168.1.1.443 (HTTPS? 0.1%
- 192 168.1.1:445 (SMB/TC 0.0%
182 168.1.1:3389 (TCF)

192.168.1.1:10050 (TCP

10.13.41.985 192.168.1.1:51623 (TCP)
:] o7 192 168 1 4-A7907 (OIKISA INPY
Connections: 419 with 2 744 round-trips; minimum setup 0.7 ms
172.28.190.238: 394 81 Kbps (639.56 pps x 77.16 bytes) in 265,088 pkts
172.28.190.238 r with 2164 overtaken, 2 gaps, O sync retx, 9 data retx, 46 dup.acks

to max window 66.550 Kbytes filed to 384 bytes
43 mizcellaneous events
192 168.1 230 _,ﬁaﬁ 192.168.1.1:443: 25733.93 Kbps (2140.70 pps x 150266 bytes) in 895,381 pkis
with 3262 lost bevond monitor, 1 overtaken, 2 sync rebe, 4, 804 data rebr, 542 selacks, 587 dup.acks
to max window 1,0438.580 Kbytes filled to 286.650 Kbytes

254 mizscellaneous events
192 168.1.241 /Applicatiun: HTTPS?

192 164 Cennecioms: with 144,724 round-trips
192.168.1.1: ; 148523 pps x 169.02 bytes) in 626 827 pkis
with 324 lost beyond monitor, 9 overtaken, 2385 sync retx, 2,393 data ret, 158 selacks, 130 dup.acks
to max window 65.535 Kbytes filled to 1.485 Kbytes
192, 45 mizcelaneous events
10.0.0.10:5433: 2373.49 Kbps (2078.94 pps x 503.47 bytes) in 869 272 pkis
with 2 lost bevond monitor, 475 overtaken, 10,378 gaps, 3 sync retx, 4 387 data retx, 2 8097 selacks, 1,261 dup.acks

flow from the server
(meaning packets were
lost on the way back).

Megalodon Challenge - My Solution

to max window 90 358 Kbytes filled to 32.710 Kbytes

1921 26 miscellaneous events
V4
— 178.245.141.2517:443 (HTTPSYTCP)
19216811 O
:E_.- e , Largest flow
MztDats Chart [Web_Apglication_Server) Client traffic is plotted above server traffic [N 25 73 Mbps

Philip Storey 15

Overview - Dialogues (Content Server Capture)

This is the same chart
but from the capture file
named “Content Server”).

Given that it contains
traffic from the Load
Generator to the Web
Server (top flow) and
also given that the
underlying details are
very close to the previous
slide, the conclusion is
that this capture was not
taken at the Content
Server, i.e. Tap-B was
located elsewhere and
on the same
VLAN/segment as Tap-A.

The capture file name
appears here in all
charts.

Megalodon Challenge - My Solution

0 Clients

from all connections
in tiers

10114117 230

10.13.41.195

17 Dialogues 13 Services|fackel |
19-Nov 01:49:43.6910 - 01:56:40.5699 rates .
Total 36.78 Mbps = 2.44 Mbps (cit) + 34.34 Mbps (svr) 0.5%
0.4%
0.3%
0.2%
192.168.1.1:443 (HTTPS? 0.1%
192.168.1.1:445 (SMB/TC 0.0%

192.168.1.1:3389 (TCP)

192.168.1.1:10050 (TCP
192.168.1.1:51623 (TCP)

172.28.190.233 [

192.168.1.230 =~

1921681241 ¢

Connections: 419 with 2 745 round-trips; minimum setup 0.7 ms
172.28.190.238- 385 .47 Kbps (540.52 pps x 77.18 bytes) in 267 037 pkts
with 2164 overtaken, 2 gaps, 9 sync retx, 9 data retx, 46 dup.acks
to max window 66.560 Kbytes filed to 384 bytes
45 mizcellaneous events
192.168.1.1:443: 25862 32 Kbps (2151.30 pps x 1502.72 bytes) in 801 637 pkis
with 3028 lost bevond monitor, 1 overtaken, 2 sync rebr, 4,804 data rebr, 541 selacks, 387 dup.acks
to max window 1,043 580 Kbytes filled to 286550 Kbytes
253 mizcellaneous events

Application: HTTPS?

192192, 168.1.1-

to max window

to max window
191

Connections: 37,220 with 145664 round-trips
with 323 lost beyond monitor, § overtaken, 23856 sync retx, 2,396 data retx, 158 selacks, 130 dup.acks
45 mizcellaneous events
10.0.0.10:5433:
with 2 lost bevond monitor, 331 overtaken, 10,392 gaps, 3 sync retx, 4,405 data retx, 2,910 selacks, 1,263 dup.acks

26 miscellaneous events

2030.08 Kbps (1501.36 pps x 169.02 bytes) in 630,667 pkis
65.536 Kbytes filed to 1.486 Kbytes
8410.47 Kbps (2087.39 pps x 503.65 bytes) in 874,595 pkis

§0.368 Kbytes filled to 32.710 Kbytes

192.168.

MetData Chart {Content_Server)

B
— 179.245.141.251:443 (HTTPS?TCF)

110
Largest flow
Client traffic is plotted above server traffic [E—) 25 30 Mbps

Philip Storey

16

All Connection Setups

This chart shows the connection details for the full 7 minutes. The solid red & blue lines display the “concurrent connections”
into each server. The “rectangular” red shapes indicate that the Load Generator quickly ramped up connections to the Web
Server (first ~25, then ~50, ~100 & ~200 - RHS scale). These appear to be 4 test runs, each time doubling the number of

concurrent connections

. The blue Content Server connections ramp up at a slower rate. The red and blue markers represent

connection setups (with height being setup time - LHS scale). The horizontal black lines in each setup also show duration.

Some connections are not successful. The most “interesting” activity seems to be here, during the heaviest test.

Overall Trans Times, Concurrent Connections & Event Rates /

o[o SENVers o5
+ 100010 Transactions
19216811 Tranzaction affect v 3 network abnormality / - \
Open Conn: 3ynch W3cale: 8 SelAck M33:1460—-Reset '
701 Event Rates m Open Conn: Synch W3cale: 8 SelAck M35:1460—= ignored
—semnver sequence gaps + Open Conn: Synch WScale: 3 SelAck MS5:14680-Ack Synch MgS:HED Se
—server recvd selective acks - » Open Conn: Synch ‘.'1.|;S|:ale: 8 SelAck MS5:1460—- Ack L 200
gp | —clientrecvd selective acks g
—server pkis out of order " |
" —client sequence gaps '
= w
= o
& 804 =
@ 150 o
w =
=
[k}
E 40 S
e =
ﬂi' a
w =
| o |
§3u- 100 3
[=]
o S
20
- 50
10 - — S
HolHe -o-deemHoa |
0 ; | 0
01:50:00 01:51:00 01:52:00 01:53:00 01:54:00 01:55:00 01:56:00 01:57:00
MetDiata Chart of 10:55 17-Aug (Web_aApplication_Server) Wednesday 19-Mov

Megalodon Challenge - My Solution Philip Storey

-35

- 30

F25

T
]
=]

T
—
n

Events f sec

10

38,153

17

Setups Zoomed to Test Run Four

This is now zoomed-in to only the 4™ test. Also, only Web Server to Content Server traffic is shown (Load Gen traffic removed).
The connections were ignored or rejected towards the end when the concurrent connection count worked its way towards the
200 mark. The dashed lines plot the packet loss rates (which have a clearly visible regularity about them).

NetData makes problem behaviour “eye catching”. Those Resets and “ignored” connections certainly stand out here.

Horizontal bands of “error”
types at 3, 6, 9 & 12 secs.

A band of “ignored” TCP
setups.

Setups that were “Reset”
by the server.

80 -

704

60 -

Response-Time Seconds

20 +

10 4

Meg

50 4

40

30 4

14,320 connection
setups on this chart.

10.0.0.10 Overall Trans Times, Cé\ncurrent Connections & Evé\t Rates

01:54:20
NetData Chart of 11:01 17-Aug (Web_Application_Server)

01:54:40

alodon Challenge - My Solution

01:55:00 01:55:2

We

0 01:55:40

dnesday 19-Mov

01:56:00

Philip Storey

01:56:20

Event Rates r250
—Semnver sequence gaps
—senver recvd selective acks } % F;’
client recvd selective acks L - - f
—senver pkis out of order [t b \ T, o
il' ¥ ! . 200
. & \
I I\, I h .
. - il f B N
I | . h | | oo J A
ol | : F by o /!
,u"t. : | l"u rl. '. L A] 7 Ol .ll, - 150
ol o i N T VL I L II I 'ﬁl' III '| A
1] -t fo SRR R B TR MR R R BT SR T 1N
et f'-fl' Pl 1[”. R ?-I'l'f'l| T R N B ".
: ! |"||, I 1 N ' l| || 1 ! ! LI I ' " | |I
R TR o 1 TR T .','lﬂ y b |;|I'L.'Illlr'|-']j! 100
! Co o LA O P T O N e L
| l.||ll.r'1,'- !'“.'I 1'1 NI l D SR 'I.r'll[,l' L\] |.r-[JoA g A J|||.
||| II’."'-" II|I|||_,| ||| !'lll1| -'Il f ||l_|'|||.||I 1 |I|,|| I|| |I 'Il' :Il']_hllll "llrl l;’ |I I T |II| 'I[IJ ||
r Rt Ly b N e] e A w1 PN
b A e e A E PR PR AT A b |
rﬂ*’fldj' AYRRIIRY -I;Hl-l"'* l.'ll'/"ﬁ'["'.l J H,“f.ﬂf;\fuffﬁl' I NI RS S S A O N T S S | 50
A O L R R /A Y A S S R T A |
||I.II ' J i . o) ' by i ' i o |
|!l Il[o lll.ql Ill Fat} .ll \ -h;l"r ! LY} d._rl Wl + I'J .Y + IIHI ll ..|I l"-_|I b
. o p——++— e HE H H——H e e
“ Y S —+—8 | —+o —8 —t+e+et+tedtes] —+e —e |

~35 |

-3

25 |

T
M2
=

T
—
n

Concurrent Connections
Events f sec

10

Connection Statistics (Test 4)

This table shows the statistics of the items that were plotted on the previous slide. That is, just test run four.
The 14,320 setups were mostly normal — but 11 were “Reset” and 47 “Ignored”.

The 258 with no Window Scaling are those where the first 2 client Syn packets were lost but the 37 one
made it through (and the server’s Syn-Ack also made it through).

As we will see, if the first 2 Syn packets don’'t make it, the client’s third attempt does not specify a Window
Scale factor. The Microsoft TCP Stack developer should get brownie points for that. If the first 2 Syns failed,
perhaps the developer thought a modified “dumbed down” 3 Syn might work?

)
|] | Transaction Description Plot Enuntl Reg Ely'tesl SecsMin |A'.ferage| Mﬂximuml R=p Min | R=p By‘tesl End Avg | End Mﬂx|
L] 1 Open Conn: SynchwScale: 8 Seldck MSS:1460--4ck Synch MS5: 1460 Seldck wiScale: 8 - Ack Yes | 14000 F00 0.0000 0.0 3.025 il 0.0 0287 B.026
+ 8 Open Conn: Synch'WwScale: 8 Seltck MS55:1460--A0k Synch M55:1460 Selack - Ack Tes it 700 00005 0145 3ms & BR.0 9154 12029
] 15 Open Conn: Synch ™ Scale: 8 Seltck MS55:1460--> ignored Yes 47 F0.0 oo 21026 21.064
14 Open Conn: Synch'wScale: 8 Seltck MS55:1460--Reset Tes 11 f0.0 EBO3274 B3E3F BE4EY 00 F2eh2 7h484
X 0 Open Conn: Synch'wScale: 8 Seldck MS55:1460-- - Ack, Tes 4 700 07780 3028 3792 2920 29200 3028 3792
-
Megalodon Challenge - My Solution Philip Storey 19

Copyright Measure |T

Reset “Rejected” Connections

The “rejected” connections look like this. [Client packets along the bottom row, server packets along the top row.]
The client sends a Syn that gets no response, so retransmits another after 3 seconds, no response, so a third Syn after a

further 6 seconds. 60 seconds after that, the server responds with a Reset.

If the server “rejected” the request due to some known limitation, we would expect to see the Reset much sooner.

The inference here is that the server actually sent a Syn-Ack in response to one or more of the client Syn packets (because the
server is aware of the connection). These Syn-Acks were all lost on the way back (so no corresponding client Ack). This forced
the server to hold the connection open until it timed-out. Packet losses in both directions are responsible for this error.

A further observation is that Syn 3, unlike 1 & 2, does not specify a Window Scale factor.

4 packets on this whole chart..

Server packets appear in a socket 2 unitz above client packets on y-scale.

Packet Tlmlng A, packet's height within a socket band is proportional to its length.
Seconds
5 10 15 0 25 a0 35 40 45 50 55 65 70 75
I SETVer
Packet seq 2515897- Reset
IP ID: 25972 ContentSvr:5433
o P Een b I = N S Protocol: c/TCP)
3] en C Scale: & SelAck MSS: 1460-Rese e ae6.8s conneftion 382990
Length: 64 bytes unspec/TCP
] =
- One or more of the client’'s Syns must have got z Synch
)) = Reset
<, through — but all the server’'s Syn-Acks must have = Synch refransmitted
3 been lost on the way back from the server. = requesi meg time
sErver fime
Packet seq 2078664 Synch retransmitted
Packet seg 2017047: Syng p - 4651
P10 2702 Protocol: unspec/TCP WebAppSwr50825
Protocol. unspec/TCP Time: 01:55:15.4791 .
Time: 01:55:06.4639 |Length: 66 bytes connectipn 382990
Length: 70 bytes Fun ctipp—ax-Seament Size: 14501 Selective Ack permitted urlspec/TCP
Function: Max Segment Sigf TaB0, viindow =cale. 0| Selechive SACk permiteds |
T T T T T T T T T T T 1 |:I|E|Tt
01:55:10 01:55:20 01:55:30 01:55:40 01:55:50 01:56:00 01:56:10 01:56:20
MztDiata Chart of 17:44 15/08/15 (Wab_Application_Sarver) Wednesday 19/11/14

Megalodon Challenge - My Solution Philip Storey

Packet Timing (Normal Transactions)

These chart types provide a visual representation of the packet times. Shapes & colours highlight different packet types (see
legend). Blue diamonds are Acks. Vertical position of black squares indicates size of data packets .

The 3-way handshake is usually quick. The first transaction is always a 127 byte request with a 3031 byte response. Then

more request/response transactions, followed by a client “Final”, server Ack, server data and client “Reset”.

Copyright Measure IT

The next slide zooms-in to these final four milliseconds.

.- Server packets appearin
PaCkEt T|m|ng A packept's heightpvpf'rthin a 50
Seconds
0 002z 004 006 008 01 012 014 .28 0.3 032 034 036

| Packet seq 841820: Synch

016

018 02

Connection ID.

a socket 2 units above Blient packets on y-scale.
et band is proportiopal to its length.

Megalodon Challenge - My Solution

Philip Storey

IP Dy 26862
Protocol: wrangleTiTCP
Oifet Con -!R—I;-IIJ.T';d-trip' 31&5;14'13%” t: blk[1T8]; blkc[1284 }-blk[Ze]; blk[2x] {5); blk[#:x]; blk[Zx] {3); blk[3x]
Length: 70 bytes
Function: Max Segment Size: 14600 Window Scale: 8\ Selective Ack permitted\
F i i i i i i i =K i h
—
Key: 59729 from 01:52:14.8584 to 01:52:15.0157 Key: 58862 from 01:32:15.0200 to 01:32:15.2349 + non-data
Trans: wrangleT/TCP Request: blk[127] -- blk[3xxx] Trans: wrangleT/TCP Request: W data
Data: BIK[127]; resp bI[3031] blk[178]: blk[1284] = Sync
Client: WebAppSvyr -- blk[2xx]: blk[2x] [5]): blk[4xx]: blk[2x] (3]: blk[3x] - ngs'ﬁ.let
e T Data: blk{178]; blk{1284]; resp bIk[245]; bk{29] (5); blk[469]; blk{29] (3); blk[3)] = Gerver time
Server. ContentSvr 0.1567 secs Client: WebAppSwr 0.0000 secs = rezpnse maq time
Response: 3031 bytes 0.0006 secs Request: 1462 byies 0.0006 secs Fin-wait state
< SETVer: ContentSwr 0.2125 secs
1 Packet seq 841822 data il | Response: 983 bytes 0.0018 secs
P ID: 27945 n
Protocol. wrangleTiTCP
Time: |}1:52:g14.3554 Packet seq 844556: Rezet
14 Round-trip: 158.7 ms IP 1D 28265
Length: 185 bytes (data 127) Protocol: wrangleTiTC|
S Timne: 01:52:15.237
Function: blk[1 -
Pt 2=l Length: 54 bytes
01:52:14.88 ' 01:52:14.94 01:52:15 01:52:15.06 01:52:15.12 ' 01:52:15.18
MetDiata Chart of 15:47 21-Aug (Content_Server) Wednesday 19-Mov

35 packsts

21

Packet Flow (Normal Transactions)

This is the final part of the connection in the previous slide. The tail-end of the second transaction is in the
blue area. Note the small packets (29 bytes is common). The client sends a 29 byte data packet — but with a
Final packet (which the server Acks). The server responds with a 29 byte packet — and the client
immediately replies with a Reset. All the connections look similar to this.

Client sends a “Final”. Server Acks it... ... then sends 29 bytes after Which triggers a Client
about 1.8ms. ‘Reset”.

Copyright Measwre |T Sexger packets appear in a socket 2 unitz above client packets on y-scale.

A pasket's height within a socket band iz propoftional to its length.
Seconds

0.0002 0.0038
3 Reguest: blk[25]; conm half closed-blk[2x]
Packet seq 844534 data |- data Packet seq 844548: data Packet seq 844555: data
P ID: 27893 IP ID: 27904 Lok el M
E Protocol: wrangleT/TCP SR Protocol: wrangleT/TCP Protocol: wrangleTVTCP & Final
S 2 Time: 01:52:15.2331 52333 Time: 01:52:15.2349 Time: 01:52:15 2371 5 Reset
= . server time
] Length: &7 bytes (data 29) | Round-trip: 0.0 ms Len Qt!'l- &7 byte= (data 29) I respnse meg time
Function: blk[29] - s (data 29) Length: 95 bytes (data 37) Function: _blk[29] - B Fin st sisbe
[T T - Function: bik{37] -
B
Packet seq §44550: data
Packet seq 844549: non-data P 1D _ 28281 Packet seq B44556: Rezet
1. P ID: U260 Protocol: wrangleT/TCP IPID: 2HIGES
Protocol: wrangleT/TCP Time: 01:52:15.2343 Protocol: wrangleT/TCP
Time: 01:52:15.2349 Length: & bytes (data 23) Time: 01:52:15.2371
Length: 64 bytes Function: blk[25] - Length: 64 byles .
01:52:15.2332 01:52:15.234 01:52:15.2348 01:52:15.2356 01:52:15.2364 01:52:15.2372
MetDiata Chart of 18:10 21-Aug (Content_Server) Wednesday 19-Mov

20 packsts

Megalodon Challenge - My Solution Philip Storey 22

Packet Table (Normal Transactions)

Some readers may be more comfortable with this table of the packets from the last two slides.

|Time Of Day | Delta | Seq | Source

| Destination

|Len |H|:Ir|Net |TDS.-' L

| IP 1D |Tspt | Flags | Data Seq | Data Ack | ConnlD |A|::-pT5rpe | [ata | Blk= | Function |

& W % < @ 4+ H H + H B H 4 I B BN 4+ E N

01:52:14.8553
01:52:14.858
0:52:14.858
0:52:14.8584
0:5215.0151
0:5215.0151
0:52:15.0151
M:52:15.0157
0:5215.0175
m:52:15.02
0:52:15.02
m:52:15.02
m:52:15.02
0:52:15.0206
0:52:15.0209
01:52:15.2331
0:52:15.231
M:52:15.2331
0:52:15.2331
0:52:15.2331
01:52:15.2331
0:52:15.231
M:52:15.2331
0:52:15.2335
0:52:15.2335
01:52:15.2335
0:52:15.2335
01:52:15.2343
0:52:15.2349
0:5215.2349
0:52:15.2343
01:52:15.2349
01:52:15.2352
0:52:15.2371
052152371

0.002a
0.0004

01567

0.0005
0.0o13
0.0025

0.0006
0.0004
0.2122

0.0003

0004

0.0003
00019

841734
241820
341521
941522
842336
842337
g425932
543000
843008
843025
843026
843027
543031
843034
843043
844531
g44532
544533
244534
844535
844536
244537
544533
844539
g44540
244541
g44542
544547
g44548
544549
244550
g44551
544553
244555
544556

WwiehappSwer: 50834
ContentSeywr: 5433
WwiebdppSyerB0E34
WWehdppSyrB0834
ContentSwr, 5433
ContentSwr, 5433
WwebdppSyrB0834
ContentSeyr 5433
WwiebdppSyr:b0334
ContentSwr, 5433
ContentSwr: 5433
WwebhdsppSyerB0834
WwiehdppSyrB0834
WwiebdppSyr:b0334
ContentSwr, 5433
ContentSwr: 5433
ContentSeywr: 5433
WwiehdppSyrB0834
ContentSwr, 5433
ContentSwr, 5433
ContentSwr: 5433
ContentSeywr: 5433
WwiehdppSyrB0834
ContentSwr, 5433
ContentSwr, 5433
ContentSwr: 5433
WwiebappSyrB0834
ContentSeyer: 5433
ContentSwr, 5433
WwiehappSwer: 50834
WwebfppSyer:B0834
WwiebappSyrB0834
ContentSeyer: 5433
ContentSwr, 5433
WwiehappSwer: 50834

ContentSwr: 5433
WwiebdppSwrB0834
ContentSeyr: 5433
ContentSeyr: 5433
WwiebdppSyr b33
WwiebdppS ey B0334
ContentSeywr: 5433
WwiebdppSwr B0834
ContentSwr: 5433
WwiebdppSyr b33
WwiehdppSwr G033
ContentSeywr: 5433
ContentSeyr: 5433
ContentSwr: 5433
WwiebdppSyr b33
WwiehdppSwr G033
WwiehdppSywrB0834
ContentSeyr: 5433
WwiebdppSyr b33
WwiebdppSyr b33
WwiehdppSwr G033
WwiehdppSywrB0834
ContentSeyr: 5433
WwiebdppSyr b33
WwiebdppSyr b33
WwiehdppSwr G033
ContentSeyr: 5433
WebtppSwr B0834
WwiebdppSyr b33
ContentSwr: 5433
ContentSeyr: 5433
ContentSeyr: 5433
WebtppSwr B0834
WwiebdppSyr b33
ContentSwr: 5433

il
Fil]
G4
185
1518
1518
B4
163
216
B4
103
B4
236
1342
B4
303
a7
G4
a7
a7
a7
a7
G4
527
a7
a7
G4
a7
95
)
av
G4
G4
a7
)

70
70
o8
o8
s
s
52
Gl
58
s
53
52
98
58
s
53
52
98
s
s
53
52
98
s
s
53
58
Gl
s
58
ha
58
Gl
s
58

IF4 DF
IP4 DF
P4 DF
IP4DF
IF4 DF
IF4 DF
IP4 DF
IF4 DF
IF4 DF
IF4 DF
IP4 DF
IP4 DF
P4 DF
IF4 DF
IF4 DF
IP4 DF
IP4 DF
P4 DF
IF4 DF
IF4 DF
IP4 DF
IP4 DF
P4 DF
IF4 DF
IF4 DF
IP4 DF
IP4 DF
IF4 DF
IF4 DF
IF4 DF
IP4DF
IP4 DF
IF4 DF
IF4 DF
IF4 DF

TTL128
TTL12E
TTL123
TTL1Z28
TTL126
TTL126
TTL128
TTL 126
TTL128
TTL126
TTL126
TTL128
TTL123
TTL128
TTL126
TTL126
TTL12E
TTL123
TTL126
TTL126
TTL126
TTL12E
TTL123
TTL126
TTL126
TTL126
TTL128
TTL 126
TTL126
TTL128
TTL128
TTL128
TTL 126
TTL126
TTL128

27934
2E8E2
27344
27345
27397
27333
2843
274
28486
27415
27116
28491
28433
28496
27422
27891
27892
29256
27893
27834
27895
27896
29257
27897
27833
27899
29258
27303
27304
29260
29261
29262
27305
27307
29265

TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF
TCF

5
A S
&
AP
&
&
&
AP
ap
ap
AP
&
AP
ap
&
AP
AP
&
ap
ap
AP
AP
&
AP
AP
AP
&
AP
ap
&
AP
A F
&
ap
&R

568430214
3819734676
565430315
aEE430515
3319784677
3819786137
BEE430342
3813787597
568430342
31977703
3819787714
562431100
565431100
568491273
3319787759
3813787759
38159732004
A65432562
3819783033
3319788062
3813732031
3819788120
A65432562
33197831419
3319788618
3813738647
565432562
3813738676
3819788705
568492562
BEE432562
565432591
3813738742
33197aa742
HE8492592

n
BEE430315
3813784677
3813784677
hE3490342
hE3490342
38159787897
oE8430342
3819787708
BEZ2491100
565431100
38157877859
3813787759
3319787759
hE3492562
5ES4325E2
BEE4925E62
3815783033
hE3492562
hE3492562
5ES4325E2
BEE4925E62
38157858149
hE3492562
hE3492562
5ES4325E2
3819738676
968492562
hE3492562
3819788742
38159788742
3815738742
oE68492532
hE3492532
3319788771

145874
145874
145874
145574
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874
145874

wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT
wrangleT

127
1460
1460

111
158

45

174
1284

245
29

29
29
29
29

483
29
29

29
7

29

29

—_ . a —a

—_ g a

blk[127]

blk[3031]
bll[153]
blk[&]
blk[45]

blk[178]
blk[1234]

blk[245]
blk[29]

blk[23]
blk[23]
blk:[23]
blk[29]

blk[463]
blk[29]
Blk[29]

blk[23]
blk[37]

blk[29]

blk[29]

The “Lost Syn” Connections

We’ve already seen what the “rejected” connections look like

(Multiple lost Syn or Syn-Ack packets then a server Reset after
60-70 seconds).

In the following few slides we’ll examine the packet timings and
behaviours for the 3, 6, 9 and 12 second connection setups as
well as the “ignored” connections.

Packet Flow (3 Second)

This is an example of one of the 3 second connection setups. The initial client Syn is ignored but the 2 Syn
(after 3 seconds) is answered. After that the first [127-3031] transaction takes under 1 second then 3 more
transactions in 0.7 sec before the usual termination, Fin-Ack-Data-Reset.

Did the client’s Syn get lost on the way to the server? The “real” work was done in
Or was a server Syn-Ack lost on the way back to the client? well under a second.
Copynight Measwre [T P Server packets appear in a socket 2Mnitz above client packets on y-scale.
Packet Tlmlng A packept's heightF:Eiimn = suckﬁkéﬁ proportional tl:E'rts. length. 4
Seconds
] 05 1 15 2 25 3 35 4 45 5 55
Packet seq 1¥52158: Synch
IP ID: 26201
34 | Protocal: TCR/P4 DF
| Time: 01:54:32. 4074
Length: 70 bytes
Function: Max Segment Size: 145800 Window Scale: 8\ Selective Ack permit:edy
non-data
MW data
%z synch
< Final
= = Reset
= 4 = Synch retransmitted
2 # Dup-SAck
o # =elective ack
W data followed gap
@ data filled a gap
= reguest mzg time
—_ server time
Packet seq 1693444: Synch
IP ID: | Packet 1752079: 5 h ret itted '
Proto IF.EIIE.: - 27744 e Al ! Pactet seq 1764364 Reset
11 Time: | Protocol: TCP/IP4 DF : P L. 1108
Time: 01-54:37 3029 0 Pretocol: TCPR/IP4 DF
. . Tirne: 01:54:34.0022
Length: T0 bytes .]
Function: Max Segment Size: 1460\ Window Scale: 8\ Selective Ack permitted ' ‘l.en L il =5
| : iy
01:54.28 01:54:30 01:54:31 01:54:32 01:54:23 01:F4:34
MztDiats Chart 674737 14-Aug (Web_Application_Server) Wednesday 19=rav 108 packsts

Megalodon Challenge - My Solution Philip Storey 25

Packet Flow (6 Second)

This is an example of the 6 second connection setups. The initial client Syn is ignored but the 2™ Syn (after
3 seconds) is answered. Note the matching Window Scale factors.
After that the normal transactions take a total 1 second before the usual termination, Fin-Ack-Data-Reset.

Did the client’s Syn get lost on the way to the server? A server Syn-Ack was lost on Prompting a 2" Syn-Ack
Or was a server Syn-Ack lost on the way back to the client? the way back to the client? three secs later.

Copyright Measurg | T

Socket
Pa

. Server packets appear in a socket 2 units above client packets on v-zcale.
Packet T|m|ng A packet's height within a socket band is proportional to its length.
Second
1 15 2 258 3 75

a5 55] 6.5

o

Crpas: Cnnn:: Onmnh RSl B -Dethak R0 14

—-Ack Synféh M5511460 Selhck Wheale: B - Ack

IP 1D

Time:

Fune

-l——_——| 7 p i 7 i : : b
01:55:06 01:56:07 01:56:08 01:56:09 01:56:10 01:56:11 01:56:12 01:56:13
MetDiata Thartaf 18:31 18-Aug (Web_Application_Server) Wednesday 19-Mov 35 packets

Megalodon Challenge - My Solution

Packet s
Protocol:

Length: 70 bytes

Function:
tion: Max Seiment Size: 14600 Window Scale: 8\ Selective Ack F:rm'rtt;ﬂ E

Packet seq 2461074: Synch retransmitted
IPID: 3713

2438331: Synch
IPID: 22007

Round-trip: 1.3 ms

Max Segment Size: 14600 Window Scale: 8\ Selective Ack permitted

Philip Storey

Packet seq 2491492: Final

23241 Protocol: TCP/IP4 DF
TCP/IP4 DF Time: 01:56:08.7832 f_r”t"_':”" Efﬂ?g’;m
01:56:05.7765 Length: 70 bytes ime:; 8612,

Packet seg 2485311 Synch) # non-data

IPID: 22888 2z Synch

Protocol: TCP/P4 DF < Final

Time: 01:56:11.7983 = Heset

RI:;d-tri 04 ms = Synch retransmitted
_ p- 1. = request msg time

Length: 70 bytes __ server time

Function: Max Segment Size: 14800 Window Scale: 8\ Selective Ack permitted

26

Packet Flow (9 Second)

This is an example of one of the 9 second connection setups. Both the initial client Syn and the
retransmitted Syn are ignored but the 3" Syn (after a further 6 seconds) is answered.

The fact that the server’s Syn-Ack has no Window Scaling may be a hint that the first two client Syn packets
were indeed lost on the way (rather than the server’s Syn-Acks being lost on the way back).

Did the client’s two Syns get lost on the way to the server?
Or were the server’s Syn-Acks lost on the way back to the client?

Copyright Measure IT

P Server packets appear in a socket 2 unitz above client packets on y-scale.
Packet Tlmlng A packet's height within a socket band is proportional to its length.
Seconds
] 05 1 15 25 3 35 4 45 5 55 i 6.5 75 3 8.5 9 95 10
Packet seq 2242185 Synch
[P IO 1267
3 Capen Dona Benahk Whasks 0 helko M EE FAEI--Aah Protocol. TCRVP4 OF
Time: 01:55:38 6975
Length: 66 bytes
Function: Max Segment Size: 1460\ Selective Ack permittedi [}
non-data
W data
s % Synch
= 4 < Final
e = Reset
o zz Synch retransmitted
= reguest msg time
_ server time

Packet seq 2180218: Synch

Packet seq 2242148: Synch retransmitted

IP 1D 34 IP ID: 5697
Protocol. TCP/P4 DF Protocol. TCP/P4 DF
Time: 01:55:20 6875 Time: 01:55:38.6914
Lenagth: 70 bytes Length: 66 bytes
Function: Wax Segment Size: 14600 Window Scale! 8\ Selecive Ack permittedy Function: Wax Segment Size: 14501 Selective Ack permittzd)
01:55:305 01:55:32 01:55:335 01:55:35 01:55:365 01:55:38 01:55:395
MetDiats Chart of 17:11 14-Aug (Web_Application_Server) Wednesday 19-Mov 37 packets
Megalodon Challenge - My Solution Philip Storey 27

Packet Flow (12 Second)

This is an example of the 12 second connection setups. It is like a 9 second one, but with the extra 3
second delay from the server. Note the matching “No Window Scaling”.

These two client Syns were likely lost on the way to the server? Was a server Syn-Ack (expected here) lost
on the way back to the client?

Copyright Measure |T

. Servegr packets appear in a socket 2 units above client packets on v-zcale.
Packet T|m|ng A4 padket's height within a socket band is proportional to its length.
Seconds
1 2 3 4 5 i T 8 g9 10 11 12 13 14
31 Cpen S ek WG sl Eatfa b HR S R Ak DR AR AR BERhE

Packet zeq 248531 2: Synch # non-data

IP D 22890 u gﬂtﬂ "
B Protocol TCP/P4 DF 2 s

%‘é 2 Time: 01:58:11.7983 = Reset
o

Round-trip: 0.4 ms
Length: 66 bytes
Function: Max Segment Size: 1460\ Selective Ack permitted

= Synch retransmitted
= request msg time
__ =erver time

Packet seq 2461072: Synch retransmitted

:;algl.:et 52 331!15231 b: Svnch P D 3712
) Protocol. TCP/P4 DF
Protocol. TCP/P4 DF Time: 01:56:08 7832
Time: 01:55:58 7735 Len ﬁth' BEh*_.-'tes
Length: 70 bytes . o .)
Function: Max S t Size: 1460 Selective Ack ittedh
Function:~ Max Segment Size: 1460\ Window Scale: 8\ ST ﬂax“' ’ehmi-en = L S

e
]

01:56:00 01:56:02 01:56:04 01:56:06 01:56:08 ' 04:56:10 ' 01:56:12
M=tDiata Chartof 18:38 18-Aug (Web_Application_Sarver) Wednesday 19-Mov

102 packets

Megalodon Challenge - My Solution Philip Storey 28

Packet Flow (“Ignored” Connection)

This is an example of the “21 second” connection setups. All of the client’s 3 Syn packets are ignored (or lost). There is no
response from the server at all. This would have resulted in failed transactions from the client’s viewpoint.

Alternatively, the server’s Syn-Acks could have been lost on the way back (but we have no evidence that the server knew
about this connection).

Another possibility is that the capture terminated before we saw the server’s 60-second Reset.

Server packets appear in a socket 2 unitz above client packets on y-scale.

Copyright Measure IT .
PaCkEt T|m|ng A packet's height within a socket band iz proportional to its length.
Seconds
] 2 4 i] 8 10 12 14 16 18 20 22
3 Crpas icnains SymcE WhEsle: E Befck HED- 1900 insnnad
= % Synch
= 5 = Synch retransmitted
a <] = request msg time
i3] o =erver time

Packet zeq 2238863: Synch Packet zeq 2304793: Synch retransmitted
IP 1D 3810 IP IO 10333

Protocol. TCP/P4 DF Protocol. TCP/P4 DF

Time: 01:55.38.1876 Time: 01:55:47.1935

Length: 70 bytes Length: 66 bytes

Eanction™s, Max Segmeni size 460\ Window Scale: 8\ Selective Ack'permi Function: Max Segment Size: 14680\ Selective Ack permitted

— 1 1 1 1 1
21:55:38 01:55:40 01:45:42 01:55:44 01:55:45 01:45:48 01:55:50 01:55:52 01:55:54 01:55:56 01:55:58 01:56:00
Metlists Chart of 17:28 14-Aug (Web_Application_Server) Wednesday 19-Mov 3 packets

Megalodon Challenge - My Solution Philip Storey 29

Lost Syn Behaviour

This is a similar chart as the above — but showing about 60 connections all at once. Socket labels 1-59 are the client rows for
the corresponding server rows 60-119. These are the “ignored” and “rejected” connections — so only Syn, Syn-Ack and Reset
packets appear.

The first batch of yellow circled Syns and Retransmitted Syns end up with (yellow circled) server Resets after around 70
seconds.

Subsequent “batches” of unanswered Syns/Retrans (light blue circled) occur with exponentially increasing frequency — but
have no responses. Could it be that the capture was stopped before we got to see the server’s Resets? Making “ignored” the
same as “rejected”?

Copyright Measure IT

.- Server packets appear in a socket 59 units above client packets on v-scale.
Packet Tlmlng Pﬂck&tspin differ&ﬁ?cunn&miuns appear in succ&ssiv&mﬁligh&r 50 u:l?r&ts.
Seconds
] 5 10 15 20 25 a0 35 40 45 a0 55 G0 65 70 75 20 a5
B Syn 1 ; i
zz Reset | .
2 yn retransmitted]]
100 4 = request msg time || . =
server time] 5
No server packets in these connections. — T S ——
f] Server Packets
R — _——
I T : : =
| ——
:' ﬂ'
60{ == - =S
= == =
s S——s -~
= !
(=]]
)]
40 - =
These are the same connections. — = ’
201 Client Packets
- - @ @@ @«
01:55:00 BeSbet 01:55:20 01:55:30 01:55:40 01:55:50 01:56:00 01:56:10 01:56:20
MetDiata Chart of 15:24 08-Sep (Content_Server) Wednesday 19-Mov 185 packets

Megalodon Challenge - My Solution Philip Storey 30

Packet Loss Behaviour

Now that we know that packet losses are the reason for the failed transactions, we now need to
examine the form the losses took in order to narrow down the possible causes.

There are two different loss types - regular data packet losses and Syn losses under heavier loads.
Both types occur between the taps and the Content Server (not between the two taps).

The following slides present various different views of the behaviour.

Data Packet Losses.
 The packet losses are not random. They occur for 2.5 seconds in every 5 second time period.
 They are not related to load (they occur regularly across all 4 test runs).
 They are not related to transaction payload size.

Syn Packet Losses.

* Occur mostly towards the end of the test period — increasing as load increases.

« Some Syn losses do occur during the 2.5 second “lossy” periods

« Can occur in contiguous groups (as already seen in the previous slide).

« They are not related to traffic load (i.e., they can occur when there is no other simultaneous
network activity).

« They are related to server stress (successful connections at the same time have slower
responses).

» If not server stress, then some stress in an intermediate device such as a firewall or load
balancer.

Two Kinds of Packet Loss Behaviour

The packet losses are not random. They occur for 2.5 seconds (or half) of every 5 second period.

As the legend says, the pink background represents times where lost data packets were observed. These form fairly
consistent bands across the whole 7 minute time period. The blue dashed line shows that Syn/Syn-Ack losses ramped up
during the fourth test run. So general losses are not load related, but Syn losses do increase up to 20+ per sec when under
load (apparently due to a different loss mechanism).

Many of the 178,465 transactions are affected by the losses (pink squares) and times are generally longer in test run four.

ContentSvr Overall Trans Times & Event Rates

"] vramaachone I NUNTHMED N | | | -
Transactions :
Transaction affected by a network abnormality
71 # Open Conn: SynWScale: 8 SelAck M35:1460-Reset | :
m Open Conn: Syn W3cale: 8 SelAck MS3:1460—=ignored : HH ”
+ Open Conn: Syn Wacale: 8 SelAck M33:1460-3yn-Ack MSS:‘MED Selﬁ-‘u:k Ack 20
= Request blk[154]; blk[1284] blk[am{] blk[3woad; blk[E}{] (B); blk[1woo]; hlk[EM] blk[Ex] b
E_ III| "l"l”.‘ ‘HI Il IE DE IR g H.IIII Il 1] T I LI
I [
TIITIE Bands |||||
= m data packets lost ;
= 10 e e IIIII" ||||| |
S 91 Event Rates |||| 1 Bl 1 { 15
o —3¥n an].rn-Ack packet Insses
: NI HI H i
E 4] ! -
@ 1 —
g H '“ 1‘%‘, I|I | o
= iy ! 105
%3- +*-th #llnihﬁlr*lﬂlr 4=H +inlnr+l-4-‘1-~|lri|1 ll#-l-ﬂ
[
o |||| i Key: 3076 from 04:51:00.8578 to 01:51:00.8782 i
Trans: wrangleT /TCP Request: hlk[127] -- blk[3xxx]
21 Data: blk[127]; resp blk[3031]
I | | Connection 156448; 182.168.1.1 == 10.0.0.10; 5433 il =
"" i M Client: WebAppSvr i
14| i At Reguest: 127 bytes
i | Server: ContentSvr 01197 secs
Respunse 3IZI31 h:.-‘t&s 0.0007 secs
0]

01:50:00 01:51:00 D1:52:D[J 01:53:00 D1:54:DD 01:55:00 01:56:08
MetDiata Chart of 17:22 30-Sep (Content_Server) Wednesday 19-Mov 178,465 trans

Megalodon Challenge - My Solution Philip Storey 32

Packet Losses Correlate with Slow Setups

The blue markers here represent TCP 3-way handshakes (other transaction types are not shown). The pink background is
where there are packet losses in general (in transactions not plotted here). Connection setups are all milliseconds quicker in

periods without packet loss.

Whatever causes the regular losses might also slow down TCP setups — OR — whatever slows down setups might also cause

packet losses?

All the setups within the “non-lossy”
periods (white background) are faster...

.. than setups during the “lossy” (pink
background) periods.

Also observe the Syn/Syn-Ack losses
in white areas (i.e., not correlated with

Transactions
0.018 4
\Open Conn:
Cpen -f

0.016 -

0.014 -

0.010 -

00084 - g | - - .

Response-Time Seconds

0.006 -

0.004

||I _____
H|\|||| | H

0.000 |

ContentSvi Conn-

Transaction affected

- Syn WS
|

Svn WS

A retwork abg rmali“
: B T,
2 |:I"'
: '|I| I||
0l il
i
i
|I]
fl 3 +|ir1
)

Iy
mjl]i i'.ut..

|I| 'Illi i]l.'l

| ” ’\Iilll Nhﬂi‘ilh

01:54:20 01:54:25 01:54:30 01:54:35 01:54:40 01:54:45 01:54:50 01:54:55

NetData Chart of 17:41 30-52p (Content_Server)

Megalodon Challenge - My Solution

Wednesday 19-Mov

Philip Storey

yn-Ack M3S:

en Times & Event Rates u "

Wl

yn-Ack MSS:1M60 Seltgr - A
G0 SejAck W

the other losses).
III
EN

..I||||

il

w -l
5

.3 i " ';'

INHHN\ ¥ nHluan

20

- 29

-20

-
m

Events f sec

—
=

I:|1 55 I:IEI I:|1 55:05 01:55:10 01:55:15 01:55: 2|:|
6,110 trans

33

Packet Loss Behaviour (Response Size Doesn’t Matter)

The transactions with light blue markers have response messages longer than 52 KBytes, and all other
transactions have messages shorter than 5 KB. Transactions with pink squares are those containing packet
losses and retransmissions.

There doesn’t appear to be any correlation of packet loss with response message length.

These large and small sized transactions contain no losses. Large and small both contain losses.

ContentSvr Overall Trans Times & Throughput

2.5 - : -600
Transactigns
Transaction affected by a network abnarmality
Reguest|*—* '
500
2.0
= L 400
=
S ‘s,
8151 . 1 o
E w
g + + L= —_
i—T e + . - - 300 %
[k} * =
Eofe - . ol 2
2104 A g
w
© Wi, oy &
e] * .
o w,/ e o
32
0.5- A g
] +‘ *ﬁ,_, 4 — :: +|4 " .
PR S s e, T ey . *{-‘t e ek S = Boboaoe
‘:,z‘"’vg:* ol w%u“ ﬁh};ﬁg’fﬁ it iﬁ?ﬂﬂ“ yﬁ%m %’E*’i@p‘ e P L
0.0 bt PRI A A ::fz*:ﬂ RIS SRROIINGL St A + R
EI‘1.55.22 01:55:24 01:55:26 01:55:28 01:55:30 01:55:32 El‘l 5534 01:55:36 01:55:38 01:55:40

MetDiata Chart of 02:57 15/08/15 (Content Server) Wednesday 191114 7 424 trans

Syn Losses Occur in “Batches”

Yellow bars are successful connection setups, green are setups with lost Syn/Syn-Acks. Horizontal length
of bars represents duration (x-axis is time-of-day). Entire chart is only a third of a second wide.
Concurrent setups had been handled successfully — but with slightly increasing delays — and then a large
batch of Syn/Syn-Ack packets were lost (no successful setups in that time). Then good connections again.
The connection arrival rate (slope of left edges) was not unusually high.

Copyright Measure IT . T — ; P
cocond Session Timing = SEssion opening
eCconas
0 00z 004 0086 0.08 01 012 014 016 013 0.2 0.22 024 026 0.28 0.3 0.2z 034 Syrver port Protocol ConnlD
1 conteatSwr 5433 160358
40 4 conpantSvr5413 160355
coritentSwr: 5433 1680354
ZontentSvr:5433 180353
N - contentSyr:5433 180352
contentSyr:5433 180351
35 e ContentSvr:3433 160350
. contentSvrii4dd 180345
= contentSyr 5433 160348
— . ContentSvr:3433 160347
A contentSyr:5433 160346
30 —_— wmﬁ"’“ﬁ }mm
COombe W
S ContentSwri5433 1603432
—— ConarizurE151 ioasts
‘__ content3vr42d 120241
251 —_—) contentSuniiAdd 180240
= — . content3wrii4dd 180338
=] contentSvr:5433 160338
2 e T oo
o ————————— CCntENtIvri3433 1603358
= 20+ R ———— CCTENCSVT: 433 160335
s S — - L 180224
____— contentSvri4il lediiz
< R ——— U 1g0132
s s S —— L 1eniz1
15 1 contentSyr:5431 160330
= e ————————————————— - 180355
/| contentSvr:5413 160328
contentSyr:5433 180327
contentSvr:5433 160325
10 4 contentSyr:E413 160325
contentSvr:5433 160324
contentSvr:5433 180323
contentSyr: 5433 180322
contentSyr: 5433 180321
JE contentSvr:5413 160320
contentSyr:5433 16803159
contentSyr:5433 160318
contentSvr:5433 180317
contentSvr:5433 180316
= T T T T T T T T T T T T T T T |
(Y ita N Y a0 e a2 Ral = Ral =
o447 92 01:54:47 98 01:54:48.04 01:54:48 1 01:54:48 16 01:54:48 22

MetDiata Chart of 02:52 22/08/15 (Content Server) Wednesday 191114 41 transactions

Megalodon Challenge - My Solution Philip Storey 35

Port Numbers are “Recycled”

There are so many TCP connection requests that the same client ephemeral port
numbers get reused two or three times each during the 4 test runs.

The Web Server (acting as client) starts its port numbers at 49155 and it takes just
over 3 minutes to cycle through the ports 49155-65534.

This doesn’t appear to be the cause of the failed connection attempts.

It can be a problem when new connections are attempted on a port that was used
recently and is still in the server’s Time-Wait state.

If workloads are expected to become as high as the load test, then to eliminate this as
a potential future problem, we could suggest to the customer that they configure the
Web Server to begin its port number sequence with a lower starting value than 49155.
This would extend the time period between reuse of the same client port numbers.

This is a small portion of the Connections table, sorted by client port number. It shows the 10 “Server Refused” connection

Connections Table

requests that began very close together. Observe that other requests around the same time were successful.

A secondary observation is that all the port numbers appear twice, showing that they were “recycled” after 171 seconds (2:51
min). The earlier connections that used these port numbers were successful.

Connil |T'_.rpe | Client (Call... | cPort | Server (Call... |5F‘|:|rt | First Packet Clo=ing Closure |T|:|tﬂ|5&n: |Tri|15 | Ch Pkts | ReTx | Kbps | Swr F‘ktsl ReTx | Kbp= |
281490 TCP 19216811 50822 10.0.0.10 5433 opn01:5214.7728 Foh01:52:14.9677 cliF A 01964 4 12 19,840 12 33136
381430 TCP 132168171 50322 100010 5433 opn0N:55:06.4223 Fclt01:55106360 cltF cR 417 4 16 1 5232 21 10142
281330 TCP 13216811 B0323 100010 5433 opnD:B2T4 7777 Folt01:5214 3826 cltF cR 02059 4 12 19,840 12 33136
281930 TCP 19216811 50323 100010 5433 opn01:55:06 4464 Refull:55:27 4465 sviRefuzedR 75,4838 n 3 2 0078 1 0.o:24
82430 TCP 19216811 50324 10.0.010 5433 opn01:5214.7303 Fch01:52:14.9906 cliF chA 02112 4 12 19,840 12 33136
382430 TCP 132168171 50324 100010 5433 opn01:55:06.4533 Refull:55:27 4532 swiRefuzedR 70,8033 n 3 2 0078 1 0024
282330 TCP 13216811 60325 100010 5433 opnD:B214.7371 Folt01:52:14.3953 cltF cR 01330 4 12 19,840 12 33136
282330 TCP 19216811 50325 100010 5433 opn01:55:06.4633 Refull:55:27 4640 sviBefuzedR B9.8723 n 3 2 0078 1 0.o:24
283490 TCP 192168171 50326 100010 5433 opn01:52:14.8030 Fcl01:52150033 cltF R nz207a 4 12 19,840 12 33136
383430 TCP 13216811 50326 100010 5433 opn0N:55:06.4733 Refull:55:27 4733 swviRefusedR 727751 n 3 2 0078 1 0024
383330 TCP 13216811 50327 100010 5433 opn0N:52:14.8043 Fclt01:52150125 cltF cR 02084 4 12 19,840 12 33136
283330 TCP 19216811 &03Z7 100010 5433 opn01:B5:06.4306 Refull:B5:27 4308 svBefuzedR 74.0053 n 3 2 0078 1 0024
SE4AS0 TCP 19216811 50328 100010 5433 opn01:52:14.8203 Fcl01:52:150239 02044 4 12 19,840 12 I33136
JE4480 TCP 13216811 50328 100010 5433 opn01:55:06.4365 Refull:55:27 4365 swiRefusedR B3.3411 n 3 2 0078 1 0024
384330 TCP 13216811 50323 100010 5433 opn0N:52:14.8231 Fclt01:52150232 cltF cR 020 4 12 19,840 12 33136
284330 TCP 19216811 B0323 100010 5433 opn01:B5:06.4333 Refull:B5: 27 4333 svBefuzedR 748183 n 3 2 0078 1 0.oz24
285430 TCP 192168171 50330 100010 5433 opndN:5214.8306 Fclt01:521503M cltF =R 020 4 12 19,840 12 33136
385430 TCP 132168171 50330 100010 5433 opn01:55:06.5213 Refull:55:27.5213 swiRefusedR 71.2363 n 3 2 0078 1 0024
385330 TCP 13216811 5033 100010 5433 opn0N:52:14.8348 Fclt01:52150353 cltF cR n2m4a 4 12 19,840 12 33136
285330 TCP 13216811 60331 100010 5433 opn01:65:06.5530 Refull:65:27 5530 swiRefuzedR 725156 n 3 2 0078 1 0024
286430 TCP 192168171 50332 100010 5433 opn0N:52:14.8383 Fclt01:52152115 cltF R 03751 4 15 21.696 20 42224
286430 TCP 192716811 50332 10.0.010 5433 opn01:55:06.5577 Refull:55:27 5577 sviRefusedR 74,2554 1] K] 2 nove 1 0.024
386330 TCP 13216811 50333 100010 5433 opn0N:52:14.8337 Fclt01:52152214 cltF cR 03862 4 15 21.696 20 42224
286330 TCP 13216811 60333 100010 5433 opndN:B5:06.5333 Folt01:55:07 7602 cltF cR 1.1640 4 15 18,700 20 363392
287430 TCP 19216811 50334 100010 5433 opn1:52:14.8552 Fclt01:52:15.2349 032119 4 15 21.696 20 42224
287490 TCP 15216811 50334 10.0.0.10 5433 opn01:55:06.5333 FolOl:55:07, 7461 1.1489 4 14 18,482 21 37,285
387330 TCP 13216811 50335 100010 5433 opnd:52:14.8576 Fclt01:52151515 cltF cR 02373 4 15 21.632 20 43504
287330 TCP 139216811 60335 100010 5433 opnD:B506E1VE Folt01:55:07 8253 cltF cR 1.2099 4 15 17365 21 30387
Megalodon Challenge - My Solution 37

Philip Storey

Connections — Client Port Numbers

This is the Connections Table, sorted by client port number. We can see that the Web Server begins at 49155

when it “recycles” its ephemeral port numbers.
Also that new connections are being made very rapidly (just a few milliseconds apart).

As we observed in the previous slide, it takes just over 3 minutes to cycle through the ports 49155-65534.

Here’s where the port
numbers “recycle”.

ConnlD | Type

| Client {Call\. | cPort | Server (Call... | sP.. | First Packet

| Closing

| Clos... |T|:|tﬂl seC |Tri... | Cht Pkts | ReTx | SelAck | Kbpz | Swr F'ktsl ReTx | Selﬁu:kl Kbps

160571 wrangleT/TCP ‘webdppSwn BH53T
160572 wrangleT/TCP “wWebdppSwr\ B2532 ContentSwr
160573 wrangleT/TCP “wWehdppSyr \ G533 ContentSwer
160574 wrangleT/TCP “wWehdppSwyr | 65534 |ContentSwer
144155 wrangleT/TCP ‘webdppBwr | 43155

4

144196 wrangleT/TCP ‘webdppSwr

144157 wrangleT/TCP ‘wWebdppSwr 49157 ContentSwr
144138 wrangleT/TCP ‘webdppSkr 431528 ContentSwr

ConnlD Type Client (Call.\.

5433
5433
5433
5433
5433
5433
5433
5433

ophn1:51:43.2922
oph1:51:43.2944
opn(1:51:43.2983
apnll:51:43.3040
opnl1:51:43.3049
opnl1:37: 45,5054
opn01:51:43.3146
opnll:51:43.3229

| cPort | Server (Call... | =P | First Packet

Feltl:51:43.3674
Feltln:51:43. 4536
Feltd1:51:43.5137
Feltd1:51:43.5148
Feltd1:51:43.4370
Feltd:51:43.5545
Feltd:51:43.5057
Feltd1:51:43.5553

| Closing

citF ch
cltF ch
cltF ch
cltF ch
cltF ch
cItF ch
citF ch
citF ch

|Clus... |T|:|talseu: |Tri..

0.07&0
0.1321
0.2169
0.2128
0.1342
0.2833
01937
0.2337

E N R C A L R

12
15
16
15
12
15
16
16

19.840
£1.532
22208
21.696
20.352
21.696
22144
22.208

1
20
15
15
12
15
15
15

J2.624
43.504
41.712
41.712
33136
4a1.712
42932
.72

. | Cht Pkt= | ReTx | Selack | Kbpz | Svr F‘ktsl ReTx | SEIAckl Kbps

160571 wrangleT/TCP “webdppSw| E5531
1605872 wrangleT/TCP ‘webdppSwr| B5532 ContentSwr

160573 wrangleT/TCP “webdppSwr | _E

1605874 wrangleT/TCP “webdppSwr | B5534 |ContentSwr
144195 wrangleT/TCP “webdppSwr | 49155 JContentSwr
144196 wrangleT/TCP ‘webdppSwr 49156 ContentSwr
144157 wrangleT/TCP “wWebdppSwr 43157 ContentSwr
144138 wrangleT/TCP “wWebdppSwr 43153 ContentSwr

Megalodon Challenge - My Solution

5433
5433
5433
5433
5433
5433
5433
5433

opn01:54:50.3093
opn01:54:50.3207

opn0l:54:50.3353

opnll:54:50.3339
opn0l:54:50. 3676
opn0l:54:50. 3676
opn01:54:50.3703

Rci01:54:51.1668
Feltd1:54:51.2542
Feltd:54:51.1818
Feltd:54:51.1846
Feltd1:54:51.1453
Feltd1:54:51. 2021

Feltd:54:51.3422
Feltd:54:51. 2204

cltF

cItF ch
cItF ch
citF ch
clitF ch
citF ch
citF ch
citF ch

Philip Storey

0.8574
0.9769
0.8553
0.8510
0.8035
0.8363
0.9766
0.8520

= G T R R O W |

1
15
12
12
12
12
16
12

13.840
21.696
20.352
20.352
13.340
20.352
22.208
20.352

12
21
13
13
13
13
21
13

33136
42736
J3.643
J3.643
J3.648
J3.643
42736
J3.643

38

Client Port Recycling

Here is an example of a client port number (56901) that was used 3 times during the 4 test runs.

This chart is 6 minutes wide, making each individual connection “compressed” into a very narrow column.
I've popped-up just one packet in each one in order to see the exact times.

We can see that the recycle time is just over 180 secs.

Copyright Measwre |T Server packets appear in a socket 2 unitz above client packets on y-scale.

Paﬁket T|m|ng A packet's height within a socket band is proportional to its length.
Seconds
] 30 60 a0 120 150 180 210 240 270 300 330 360 390
[L | SEerver
ContentSvr5433
31 Rea==t connection 151941
u |
i u wrangleT/TCP
7
Packet seq 2502084: Syn non-data
1P IDy; 22888 B data
E Protocol. wrangleT/TCP z Syn
o 2 Time: 01:56:11.7983 ¢ Final
= - % Reset
] Hound-trip: 0.4 ms Z Syn retransmitted
Length: 70 bytes server time
Fqnu:tiug: r.1ﬂ;-c Segment Slize: 14800 ‘a'-.f!nduw Scale:l N Selecti'.felﬁu:k perm'rl'telu:l‘.
1
| |] |]
WebAppSvr 56901
Packet seq 108237: Rezet Packet seq 1294438: Reset
14 |IPID: 26403 IPIC: 20095 connection 151941
Protocol: wrangleTITCP Protocol: wrangleT/TCP
Tirmne: 01:50:00.75356 Time: 01:53:13.5346 wranaleT/ITCP
Length: 54 bytes Length: 54 bytes g
[| ' ' ' [_
; ; ; : : —& ; ; ; : o~ . client
01:50:00 01:51:00 01:52:00 01:53:00 01:54:00 01:55:00 01:56:00
MetDrata Chart of 15:57 30-S=p (Content_Server) Wednesday 19-MNov 25 packsts

Megalodon Challenge - My Solution Philip Storey 39

Additional Application Performance Observations

So far we’ve covered the cause of the transaction failures — which was needed to
answer the question(s) posed in the original “Megalodon Challenge”.

Some other interesting application behaviours became apparent in that analysis.

Next, we’ll examine other interesting performance characteristics of the applications and
network components.

I’'ve never come across some of these behaviours before — and for some | can’t even
hypothesise the mechanism(s) that might cause them.

| hope you also find these interesting.

If you have ideas as to the potential causes — or if you have experienced similar
behaviours in your packet analysis career, please let me know!

Phil@NetworkDetective.com.au.

mailto:Phil@NetworkDetective.com.au?subject=Megalodon Challenge Behaviours

Commentary

A typical connection request to the Content Server involves:

* TCP 3-way handshake.

* First data exchange: 127 byte request — 3031 byte response (possibly an SSL key exchange).

* Second data exchange: 158 — 51 (possibly SSL cypher or user authentication?).

* Third data exchange: 14xx — 52K/983/~1K (likely the main HTTP GET/POST or similar request).

* Termination by: Client 29-bytes data - Final — server Ack — server 29-bytes data — client Reset.
(which has the flavour of an SSL “Alert” session termination).

There usually seems to be just one “real” request in each connection (HTTP GET/POST?). This
allows us to use the “total connection duration” as a proxy for server application response
time.

Further, comparing the time components of the “SSL handshake” versus the “HTTP
request/response”. The “SSL key exchange” takes significantly longer during the heavier load
tests.

The Content Server appears to struggle during the heaviest load test.

This could be due to:

* Server limit on application threads available to process these functions (most likely).
. Server limit on TCP connections (not apparent in capture).

* Adifficulty with client port recycle times (not apparent in capture).

* Load balancer limitations

The packet losses could be caused by the load balancer, other network equipment or the Content
Server itself.

Performance Recommendations

1) The Content Server configuration be investigated and rectified for any limitations on:
— Concurrent threads for HTTP/HTTPS processing.
— TCP connections (e.g. a maximum concurrent connection limit).
— Port “recycling” ability.

Although port “recycling” doesn’t appear to be an issue, our observed 170 seconds is less than the TCP “TIME_WAIT”
maximum of 240 seconds. The Web Server could be reconfigured to use a larger range of ephemeral ports for its outgoing
connections. That is, begin the cycles with a client port number lower than 49155.

This would protect against the possibility of running into a future server “TIME_WAIT” connection problem if real life loads
ever increase above the levels of the fourth test run.

2) The application behaviour be investigated, with a view to improving performance.
— The first & second transaction in every connection are the same.
— They appear to be SLL related.
— If so, then the 3031-byte certificate is delivered in full for every connection.

— Investigate the possibility of utilising any of the SSL “session reuse” options so that subsequent
connections don’t always incur this setup overhead.

3) Investigate reducing the number of connections.

— After the same first & second transactions, there is usually just one other transaction in every
connection.

If the Web Server application could be modified to perform more than one request per connection,

then the “per connection” overheads (transactions 1 & 2 - which can be significant) would be
significantly reduced.

Megalodon Challenge - My Solution Philip Storey

42

Performance Recommendations (Cont.)

4) Investigate the mechanism that causes the regular “gap” periods of 0.3 seconds, every 4.5
seconds or so. BOTH the Web Server and Content Server applications seem to stop
communicating or responding — but the TCP stacks still operate properly.

This represents approximately 6% of the total time.

* Why would this mechanism occur simultaneously in both servers?

5) Investigate the reason for the Content Server responses not being delivered with maximum
efficiency (i.e., as a stream of full sized packets).
This could be related to internal server resource limitations, meaning that the only “fix”
would be to move to a more powerful server.

6) Investigate the reason for the Web Server ramping up its outgoing connection count only at
one second intervals.
It is apparent at the beginning of all test runs — but more visible in test run 4 - that the Load
Generator’s connections are all initiated at once (with the corresponding number of
transaction requests). However, the Web Server begins with around half the number of
connections to the Content Server. This means that the initial Load Generator transactions in
each run are always slower than the subsequent transactions.

If more back-end connections were initiated up front, this queuing effect would be reduced.

Performance Evidence Trail

We'll first look at the Web Server to Content Server traffic flows, connections and
transactions.

These have been broken down and examined for each of the four test runs, showing
the differing behaviours under the different loads.

Later on, there is an investigation into some interesting application “sleeping”
behaviour that seems synchronised between these two servers.

Content Server Connection Total Durations

This chart shows the connection duration details (to the Content Server) for the full 7 minutes. The blue
markers now represent total durations of TCP connections (not just the setup times). Longer durations are

higher up on the chart (LHS scale). The dashed line now represents “connections per second” (RHS scale).

Connections are longer after 1:54:30, suggesting that the server takes longer to respond to requests.
We need to zoom down to see the data for most connections more clearly.

The most “interesting” activity seems to be here, during the heaviest test. No. of connections on the chart.

10.0.0.10 Connection Duration Times\Throughput & Concurrent Connections

80 - -250
e ——
\ /H/\ | f V d\ -200
60 | i | |
% \/\ ! '. [
o Il ! , g
2 50- : L =
: I | i 50 2
= |I 1 |' |
o L : £
- R 8
(] l II I ' S
5 | v 0 5
2 ' ! '
g 304 - N £
= [=]
=], ! | | L]
[=] , | "
< B L
20 ey : |
' o8 ' 50
by I —t .ll [—_— —
10 S = . J
_y p e | ++
0 b 0
01:50:00 01:51:00 01:52:00 01:53:00 01:54:00 01:55:00 01:56:00 01:57:00

I
I
I
- 100
I
I
I

T
[=y]
=]

Responses f sec

-120°

T
.
=)

-20

T
=]

MetDiata Chart of 12:11 17/08/15 (Web_Application_Server) Wednesday 191114 36,996

Content Server Connection Total Durations

The LHS scale is now just 6 seconds high. We can see that there are very short (near zero) connections
during tests 1. However, during test 2, there is some “white space” indicating longer times.

In tests 3 & 4, very few connections are under half a second (forming a “cloud base” on the chart) — and there
are many more above 3-4 seconds.

Note that the server seems incapable of processing more than ~100 connections per second (RHS scale).

This is the point that the server begins to suffer “stress”. Processing rate remains fairly constant at ~100 / sec.

-

+ 10.0.04 &Cgpne?:tinn Duration Times, Thr y:g:;hput & Concurrent Connections .
G- —+ 4+ —+ - — - —|—|—|_-H—HI-I—H—I—_|§:FH—H-I—I-I-I+I-I-IH-I+HII-I-I-H-H-HH - 250 —'12IZII

- 100
-200 I

w
= |
- w -
84 £ o
w H150 © o
= [(k]
= = w
™ 5 .y
s 3 < |60 @
o T =
S = s
= L o |
2 100 g @
g o o
£ 21 o 40
(=]
(&
-50
1 F20
EI n T T T T T T T T EI
01:50:00 0+:51:00 04.53:00 01:54:00 01:55:00 01:56:00 01:57:00

MztDiats Chart of 12:33 17/08/15 (Web_Application_server) Wednesday 191114 36,9946

Megalodon Challenge - My Solution Philip Storey 46

Every Connection Has Same First & Second Transaction

This snippet from the top of the Statistics table shows the transactions in order of frequency. It also shows the colours (LHS)
that will be used on the following slides. It is sorted by the “Count” column.

The pink transaction in the top row (127 byte request — 3031 byte response) is the first one in every successful connection. The
orange one (158 — 51) is always the second transaction. The transactions with 52 KB (pale blue) and 983 byte responses (red)
are very common (but are spread throughout this table due to their varying packet size characteristics).

|] |Transactiun Description | Plot | Chk Avg | Count | Req By't&sl SecsMin |Av&rﬂge | Mﬂximuml Rsp Bytes | End Awvg | End r.1ﬂx|
u 3 Request: bllk[127]-blk[3x=2] es 36823 127.0 0.0032 .433 4056 30310) 0518 421
. 2 Open Conn: SpniwScale: 8 Seltck MSS:T460-5pn-dck M55 1460 Selbek WSeale: 2 - Ack ez JE82E F0.0 0.0000 0.0mse 3026 0.0 0160 B.026
4 Request: blk[153]-blk[E]; blk[4=] Tes 0002 34R34 158.0 0.0000 0.003 1.185 51.0 0.011 1.432
1 Request: blk[29]: conn half closed--blk[2x] Tes 0,000 32000 290 0.0000 0.004 3063 29.0 0004 2063
u 5 Request: blk[173]; bllk[1284]-blk[Zxx]; blk[2] [5]; blk[4x8]; blk[2:] [3]: blk[32] Tes 0.000 10281 14620 00322 0217 3064 933.0 0220 3066
. 10 Request: blk[170]; blk[1284]-blk[4=x]; blk[2x] [5]; blk[4=x]; blk[2=] [3]; blk[3=] Tes 0000 BREY 14540 0.0290 0163 1.184 11430 0165 1.187
. 11 Request: blk[133]; bll[1284]-bll[2ux]; bll[24]; bll[3x] Tes 0000 3734 14220 00107 Q046 10436 1.0 no4s 10497
. 9 Request: blk[202]; blk[1284]-bll[2u=]; blk[28]: Bll[3x] es 0.000 3706 1486.0 0.0227 0.105 1.199 1.0 0107 1.2M
20 Request: bll[158]-blk[5] g 0.002 1838 158.0 00012 0.040 9.930 51.0 0.045 9,920
. 18 Request: blk[29]; conn half clozed; conn already half clozed by client--blk[2x)] Ve 0000 1661 290 00000 0.003 0.303 290 0.003 0.303
35 Request: blk[154]; blk[1284]-blk[4==]; blk[2=] [3]; blk[3xxxx]; blk[2x] [B]; blk[Txxax]; Blk[26] [2]; blk[3=] Tes 0ooo 1273 14380 00942 0304 1.003 525570 0328 2483
u 17 Request: blk[173]; blk[1284]-blk[Zxx]; blk[24] [4]; blk[4x8]; blk[2:] [2]: blk[3] Tes 0ooo 863 14620 0.0345 0220 1197 933.0 0223 1.200
. 37 Request: blk[170]; blk[1284]-blk[4=x]; blk[2x] [4]; blk[4=x]; blk[2=] [3]; blk[3=] Tes 0ooo 85g 14540 00333 0170 1.113 11430 0173 1.114
36 Request: bik[154]; bll[12834]-blk[4x=]; Bll[2x] 5]; blk[3mmmm]; blk[2x] [7]; Bll[Tamms]; Bll[24] 2]; blk[3x] Tes 0000 B30 14380 071086 0,290 1176 B2EEAN 0314 1.190
u 21 Request: blk[173]; blk[1284]-blk[2xax]; Blk[24] [5]; blk[4::]; Blk[Za] [2]; Blk[22] es 0000 430 14620 0.0402 0.229 1.326 9530 0.23z2 1.328
. 26 Request: bll[202]; blk[1284]--bll[2wx]; blk[3=] g 0000 406 1486.0 0.0247 01z 1.024 1.0 0114 1.026
. 57 Request: bllk[138]: blk[1284]-bll[2wx]: blk[3=] Tes 0000 365 14220 00122 0.049 0.EE2 1.0 0.052 0.6E3
. 32 Request: blk[170]: blk[1284]--blk[4xx]; blk[24] [5]; blk[4xx]; blk[2:] [3]: blk[32]; blk[2x] Tes 0ooo 283 14540 00286 0034 0.630 11720 0037 0536
u 22 Request: blk[173]; bllk[1284]--blk[2xx]; blk[24] [5]; blk[4xx]; blk[2:] [3]: blk[32]; blk[2x] Tes 0ooo 263 14620 00333 0142 1.3 120 0144 1.013
+ 30 Open Conm: SynwWScale: 8 Seldck M55:1460-5pn-Ack MS5:1460 Seldck - Ack Tes 265 700 0.0005 0175 £.005 BE.0 9162 12029
u B0 Request: blk[173]; blk[1284]-bllk[2=x]; blk[28] [5]; blk[4=<]; blk[2:] [2]; blk[Ex] Tes 0ooo 254 14620 00422 0225 1.324 9332 0229 1.328
. E Request: blk[29]-blk[2x] es oooo o 24 29.0 0.000 0.00z2 23.0 0.000 0.00z
. BT Request: bll[127]; blk[158]-bll[3wax]; blk[6]: blk[4x] g 200 2860 0.0006 0.025 0920 30820 0.025 0920
+ 121 Request: blk[170]: blk[1284]-blk[4u]: blk[2] [5]; blk[42]; blk[2] [2]: blk[E=] Tes oooo 183 14540 0.043 0181 0928 11430 0184 093
B6 Request: blk[154]; blk[1284]-blk[4==]; blk[2=] [3]; blk[Jxxxx]; blk[2] (5); blk[Txxn]; Blk[26] [2]; blk[3x] Tes nooo 151 14380 01120 0.3m 09343 525571 0.475 1.660
. 42 Request: blk[133]; bllk[1284]-blk[Zxx]; blk[2x]; blk[3x]: blk[2x] Tes 0ooo 149 14220 0013 0033 0928 3400 0042 0929
+ 206 Request blk[132]; bllk[1284]-blk[2u4]; blk[Ex] Tes nooo 139 14220 00136 0038 0348 H20 0.045 0361
+ 1028 Request blk[202]; bllk[1284]-blk[2u4]; blk[Ex] Tes 0ooo 138 1486.0 0.0290 0118 0.E32 1.4 0125 0634
. 58 Request: blk[157]-blk[E]; blk[4=] es 0oz 134 157.0 0003 0.01a 034 51.0 004 0.530
. 7 Request: blk[202]; blk[1284]-bll[2wx]; blk[2=]; bll[3x]; blk[2x] g 0000 130 1486.0 0.0228 0.062 0370 340.0 0.063 0.3

24 Fequest: bIk[154]: blk[1284]-blk[4xx]: blk[24] [5]: blk[3umex]: Blk[24] [B): blk[1sme]: blk[2wx]: blk[2¢] [2): . Yes — 0000 115 14380 01229 0312 1107 625672 0337 1.748

The First Transaction in Every Connection

This chart plots only TCP connection setups (blue) plus just that one transaction type (solid pink square).
The hollow pink squares surround transactions containing packet losses.

The 2 popups show an example of a connection that suffered two 3 second delays, one in the 3-way setup
“transaction” and one in the data delivery transaction.

These are all 3 second This is the point that the server begins to suffer On the next slide, we'll see the packets
TCP setups. “stress”. Always with this first transaction type. in this connection + transaction.
ontentSvr Overall Trans TIITIES Key: 141968 from 01:55:01.3299 to 01:55:04.9820
5.0 & Refuest blﬂﬁ ?]—blk[Em];_btn Cl_rllﬁﬂtﬁr — 4 -+ Eratn.:-;: ;ﬁ;glgT!TﬁE 3Il;lall?lluuns:st: blk[127] -- blk[3xxx]
m |dentified connection 145010 WebAppSvr - ContentSy = 145[.01?01-' fj§g1ﬁé1 :]}m 0.0.10: 5433
45| [Trgnsaction affected by a network abnormality CIE_'"”f '”"w bamaser
| # Open Conn: Synch WScale: 8 SelAck MSS:1460—Resst ent | WTERARpavT
m Opkn Conn: Synch Wacale: 8 SelAck M35:1460—= ignbred :Eq”'&‘"'t- 1C2Tttmt§5 N
- . \ . . - . _ erver: ontentsyr L SECE
404 + Opgn Conn: Synch Wacale: 8 SelAck M55:1460—-Ack Synch M35:1460 SelAck .At_:E_. -4 Response: 3031 bytes 2 0996 secs
i % =
..
o35
=
=
o .- 1y
EE'D Sl
@ Kew: 139979 from 01:54:58.3175 to 01:55:01.3259]
E 35 Trans: TCP Open Conn:
E Synch W5cale: 8 SelAck M55:1460 g Am g =
w [] -- Ack Synch M55:1460 Selhck W5cale: 8 - Ack [] B
a 2.0 Data: Wscale: 8 Selfck MSS5:1450-1460 Selack WScale: 8 L] 5 [|
%] Connaction 145010: 192.168.1.1 = 10.0.0.10: 5433 8 m u
& Client: WebAppSyr
1.5 B (] Request: 70 bytes 29572 secs
g m = Server: ContentSwr 0.0152 zecs . L
Responge. 70 bytes 0.0000 zecs | 1. -
1.0 ".|r'.. [| e - : -
0.0 .
01:50:00 01:51:00 01:52:00 01:23:00 01:54:00 01:55:00 01:56:00 01:57:00
MetDiata Chart of 14:37 21-Aug (Content_Server) Wednesday 19-MNov 73,993 trans

Megalodon Challenge - My Solution Philip Storey 48

3 Sec Setup + 0.5 Sec Trans + 3 Sec Retrans = 6.5 Secs

In this example, we see a lost Syn adding 3 seconds, then a data packet (black square) being retransmitted
(pink square) - adding a further 3 seconds to what was a half second response. This is because the client’s
Ack (blue diamond) was lost on the way back to the server. (The pink loop shows the data->retrans linkage).
Note the client’s Duplicate Selective Ack (green diamond) informing the server that the retransmission was

unnecessary.

This Syn (or the Syn-Ack) didn’t get Server sent a This Ack didn’t get || So the server resent Triggering a
through. The 2" of each both made it. data packet. to the server. the data packet. D-Sack.
Copyright Magswrs [T P Server packets appear in a socke} 2 unitz above clien] packets on y-scale.
: Paﬁket T|m|ng A pﬂDkLEt'S h&ightaﬁ'rthin a socket kand is proportional cE'rts length. 4
Secgnds
0 05 1 15 2 25 3 38
: SErVer
ContentSvr5433
3 connection 145010
25550 wrangleT/TCP
l | ;ﬁg * # non-data
— W data
Packet seq 1393753 Synch Key: 41968 from 01:55:01.3299 to 01:55:04.9820 % Synch
P10 3250 Trans: wrangleT/TCP Bequest: blk[127] -- blk[3xxx] o E‘"ﬂlt
Protocol: | wrangleT/TCP Data: BIK[127]; resp bIk[3031] ﬁ dgt?mtr rsmited
Time: 01:55:01.3299 Client: WebAppSvyr = Synch retransmitted
Length: [70 bytes Request: | 127 bytes # Dup-SAck _
Function: | Max Segment Size: 1460\ Window Scale: 8\ Selective Ack permitted Server: ContentSwr 0.6585 zecs — ;ﬁeﬂ#gﬂing time
Response. 3031 bytes 29936 secs I respnse msg time
| ?‘E_ Fin-wait state
Z
Packet seq 1993701: Synch retransmitted v
Packet seq 1964143: S}'Hl::h P ID: = 131 ¥ Packet seq 2022868: Dup-SACk
i St F‘rutu.:n:ul' wrangleT/TCP IP1D: T
Protocol: | wrangleT/TCP Time: 01:95:01.3147 Protocol wrangleT/TCP
Time: 01:54:58.3175 L e Time: 01:55:04.9812
: oA Length: .
e N e Function: Mak Seqment Size: 1460\ Window Scale: 8\ Seled - 10 bytes
Lnetion. 'E', EQMET Iz Vindow scale: o\ SEEQ Function: Selective Ack: 4009350228 4009351688 \

01:54:58 01:54:59 01:55:00

NetData Chart of 14:05 21-Aug (Content_Server)

Megalodon Challenge - My Solution

Functing, ™ " iax SEE ment Size: 1460\ Window Scale: 8\ Selective Ack Eermil‘tif !

01:55:01

_
215502

01:55:03

Wednesday 19-Mov

Philip Storey

01:55:04

01:55:05

client
28 packsts

49

The Second & Other Transactions

This chart plots all the transaction types. The orange ones are always the second transaction in every connection. They make
an interesting pattern of horizontal bands across all tests, showing that there is some mechanism causing regular occurrences
of 300ms, 500ms and 900ms responses. Most are very fast though. The pale blue transactions are the 52 KB transactions, red
are 983 bytes. Only the pink ones seem to be significantly affected by load.

As usual, the hollow pink squares surround transactions containing packet losses.

These are all 52 KB responses, taking The orange [158 — 51] transactions are often 300m,
longer when affected by packet losses. 500ms or more — independently of load.

.) []
Transactions | ContentSvr Overall Trans Time
95 Transaction affacted by a network abnormality
Request: blk1581-*
» Reqguest BIE[29]; conn half closed—-blk[Z2y] - -
Request: DIk154]; blk[1284]—* u ™
m Request blk[127]— =
m Request hlk[‘l?B];bIk['!EE:i]—* .I
2.0] |
[]
n ¥ [.
m I. [
= » . % n
S " w" . awy'® En il
o) . I I
215 = B =l .
> R . o W
E = u i
i . i
d L
w
s 1.0
[=N
w
[
o
0.5 n
U'D- » . — i .) —_—
01:50:00 01:51:00 01:52:00 a1:53:00 01:54:00 01:55:00 01:56:00 01:57:00
MetDiata Chart of 18:50 05-Oct (Content_Server) Wednesday 19-Mov 181,454 frans

Megalodon Challenge - My Solution Philip Storey 50

The Transaction Groupings in Every Connection

This is a snippet of the Transactions table, sorted by connections (ConnlID).
We see the regular groupings of:
[TCP Setup], [127—3031], [158—51], [Varying Transaction], [29—29] (closure).

The timing durations are also broken up into request/server/response for each transaction.

Transaction colour as shown in the charts. Just one connection in this table.
T

|%ey | Reguest Strt | Resp End |Type | Description | Ragst Dur | Sirt Rsp | End R=sp | Resp Dur | ConnlD | Client | Server | Port | LRgst | LRespl Frame |
89251 01:5310.757667 01:53:10.799735 TCP Open Conn: SpnWScale: 8 Selbck MS5:1460-Syn-dck M. 0.0021 0.0021 00000 151771 WebdppSwr ContentSwr 5433 Fil 70 1275335
B968E 01:53:10.799796 01:53:11.501142 wrangleT/TCP Request: blk[127]-blk[3xux] 07007 07013 00007 151771 WebdppSwr ContentSer 5433 127 3031 1275347
89688 01:5311.503124 01:53.11.508081 wrangleT/TCP Fegquest: blk[158]-blk[E]; blk[4x] 00020 0.0020 00000 151771 WebdppSwr ContentSer 5433 158 51 1280855
89764 01:53:11.508084 01:53:11.675965 wrangleT/TCP Request: blk[170]; blk[1284]--blk[4=x]; blk[2+] (5); blk[4#=]: b... 0.0005 01685 01704 0008 151771 WebdppSwr ContentSer 5433 1454 1143 1280889
89765 01:B11.670967 01:63:11.67831 wrangleT/TCP Reguest: blk[29]; conn half closed--blk[2x] 0.0023 0.0023 1591771 WebdppSwr ContentSwr 5433 29 29 1232100
172173 01:56:03.966291 01:56:03.983373 (TCF Open Conin: SynWScale: B Selbdck MSS5:1460-Syn-dek M. 0ot 0017 00000 151771 “WebdppSvr ContentSwr 5433 70 700 2443574
172669 01:56:03.983383 015605116653 wrangleT/TCP Request: blk[127]-blk[3uxx] 1.132A1 1.1333 0002 151771 WebdppSwr ContentSer 5433 127 3031 2443669
172671 01:56:05.119235 01:56:05.120794 wrangleT/TCP Request: blk[158]-blk[E]: blk[4x] 000e 00016 00000 151771 “WebdppSwr ContentSer 5433 1568 51 2450022
172828 01:56:05.120796 01:56:05.410303 wrangleT/TCP Request: blk[154]; blk[1284]--bilk[4xx]; blk[2x] [5]: blk[Jxxss]... 0.0005 02807 0.2890 00083 151771 “WebdppSwr ContentSewr 5433 1438 52561 2450028
172831 01:56:05.410305 01.56:05.413042 “wrangleT/TCP Reaguest blk[23]: conn half cloged--blkl2x] 0.0027 0.0027 151771 WebdppSyr ContentSwr 5433 29 287 2452033
B840 01:43:58.229417 01:49:58.243233 TCP Open Conn: SynWScale: B Seldck MS5:1460-Syn-dek M. 0o 00139 00027 151772 WebdppSvr ContentSwr 5433 70 70 95909
E952 (01:43:58.2433 01:49:58.556925 wrangleT/TCP Request: blk[127]-blk[3uxx] 0.0140 0.3136 02936 151772 “WebdppSwr ContentSwr 5433 127 3031 96177
E955 01:43:58.558722 01:49:58.561993 wrangleT/TCP Request: blk[158]-bIK[E]; blk[4x] 00033 0.0033 00000 181772 “WebdppSwr ContentSer 5433 158 51 98257
TOOB 01:43:58.561995 01:49:58.662703 wrangleT/TCP Request: bllk[178]; bll[1284]--blk[2=2]; bll[2+] (5); blk[4%=]; b... 0.0008 0.0932 01002 0000 151772 WebdppSwr ContentSyr 5433 1462 983 98281
7009 01:49:58.6630839 01:49:58.6641968 wrangleT/TCP Request: blk[23]: conn half closed--blk[2x] 0.0011 0.0011 151772 WebhdppSwr ContentSwr 5433 29 29 93R92
89301 01:53%10.808341 01:5310.811514 [TCP Open Conn: Sen'wWicale: 8 Selbck M55:1460-Syn-dck M. 00023 0.0032 00003 151772 “WebdppSvr ContentSwr 5433 il 700 1275621
89630 01:53:10.811522 01:53:11.511488 wrangleT/TCP Request: blk[127]-blk[3xxx] 06335 0.7000 00004 151772 “WebdppSwr ContentSwr 5433 127 3031 1275826
89636 01:5%11.513621 01:5311.518517 wrangleT/TCP Request: blk[158]-bIk[E]: blk[4x] 00023 0.0049 00026 151772 “WebdppSwr ContentSeyr 5433 158 51 1280942
89789 01:53:11.518821 01:53:11.719206 | wrangleT/TCP Request: blk[178]; blk[1284]--blk[2=x]; bllk[2+] (5); blk[4x=]: b... 0.0005 01964 0.1939 00035 151772 “WebdppSwr ContentSer 5433 1462 983 1281062
89791 01:5311.719215 01:563:11.722121 “wranagleT/TCP Request: blk[29]: conn half closed--blk[2x] 000239 0.0029 151772 WebdppSyr ContentSwr 5433 29 2971282338
172174 01.56:03.966292 015603983381 TCF Open Conn: SenWScale: 8 Seldck MS55:1460-Syn-dck M. 001A 0017 00000 151772 WebdppSvr ContentSwr 5433 Kl 70 2443575
172675 01:56:03.983382 01:56:05.126836 wrangleT/TCP Request: blk[127]-blk[3uxx] 11423 1.1435 00011 151772 WebdppSwr ContentSer 5433 127 3031 2443668
172677 01:56:05.128655 01.56:05.130815 wrangleT/TCP FRegquest: blk[158]-blk[E]; blk[4x] 0.o0z2 0.00z2 00000 151772 WebdppSwr ContentSer 5433 158 51 2450057
172766 01:56:05.130817 01:56:058.323415 wrangleT/TCP Request: blk[178]; blk[1284]--blk[2xx]; blk[2«] [5]; blk[4==]; b... 0.0006 01902 01920 0008 151772 WebdppSwr ContentSyr 5433 1462 983 2450064
172770 01:66:06.323418 01:66:05.327576 wrangleT/TCP Regquest; blk[23]; conn half closed--blk[2x] 0.0042 0.0042 191772 WebdppSwr ContentSer 5433 29 29 2451485
B84 01:43:58.269786 01:49:58.271606 [TCP Open Conin: SynWScale: B Selbck MSS5:1460-Syn-dek M. 0oos nooia 00000 151773 “WebdppSvr ContentSwr 5433 70 7Oy 9E24
ES43 01:4%:58.271607 01:49:58.288693 | wrangleT/TCP Request: blk[127]-blk[3xux] 00133 0.0171 00037 151773 “WebdppSwr ContentSyr 5433 127 3031 95244
E353 01:43:58.29043 01:49:58.294221 | wrangleT/TCP Request: blk[158]-bIk[E]; blk[4x] 00038 0.0033 151773 WebdppSwr ContentSwr 5433 158 51 96279
BBE1 071:43:58.294224 01:49:58.308973 | wrangleT/TCP Request: blk[138]; blk[1284]--blk[2=x]; blk[2x]: blk[3x] 0.0005 00135 0.0143 00007 151773 WebdppSwr ContentSyr 5433 1422 an 9637
B862 01:49:58.308976 01:49:58.30932 " wranaleT/TCF Request: blk[29]: conn half closed--blk[2x] 0.0003 0.0003 181773 WebdppSwr ContentSwr 5433 29 29 96407
89307 01:5310.819403 01:53:10.821353 TCP Open Conn: SynWScale: B Seldck MS5:1460-Syn-dek M. 0ooa 0.0020 00000 151773 WebdppSvr ContentSwr 5433 70 70 1275916

83652 01:5210.821354 01:5311.5146583 wrangleT/TCP Request: blk[127]-blk[3] 06323 06933 00004 151773 WebdppSvr ContentSwr 5433 127 3031 1275345

Just the First Transaction

This chart now plots just the 36,829 instances of the first common transaction type. The pink outlines here surround those
transactions containing packet losses and retransmissions.

The solid black line is “Transactions in Progress” — which shows how many of these transactions were being processed in
parallel at any one time. The dashed black line effectively counts “Transactions per Second”.

We see that around 100 is the maximum for both values. Improving this transaction would improve performance across all tests.

Packet losses can account for
many of the longer durations.

But sometimes 3 or 4 seconds
is due to the server “thinking”.

The fact that they all take significantly longer
during the heavier tests is readily apparent.

ie ContentSvr Overall Trans /Times, Throughput & Transactions in Progres 50 600
| Transactions [[|
Transaction affected by a\network abnormality - I
apd ™ Request: bIk[127]-bIk3 .
: L4140 |
L500
35 |
™ 120 |
'|| 1
S 3.0 La00 !
S - 100w
@25 2 g
E a0 S 300 2
@20 = =
2 60 1= E
151 L 200
L 40
1.0 1 -
™ . - L 100
0.51 5 SO (TNl T r
-1 o —w s
UD [| "-“-r':l];.' 1] U

01:50:00 01:51:00

NetData Chart of 13:42 11-Oct (Content_Server)

Megalodon Challenge - My Solution

01:52-00 01:32:00

Wednesday 19-Mov

Philip Storey

01:55:00 01:56:00

L0
01:57:00

52

Duration of the First Transactions

This frequency histogram of the [127]—[3031] transactions shows that most of them are under a second — with
an average of half a second.

On the next slides are the same transaction charts and histograms — broken down by the individual test runs.
There we see the increasing times as the test runs get progressively “heavier’. Even better, we also see how
the transaction times vary.

ContentSvr Response-Time Distribution Dsz%

Wednesday 19-Mov 01:49:44 to 01:56:39
Request: bIK127]-blk[3m00]

4000 0.4977 secs ' ' 05181 secs 100%
3500 0%
L 80%
3000 _
- 70% o
S 2500 41 E
o 8 B0% =
© 8 ®
c L4 =
2 20004 50% g
2 2
% 1500 {f -40% B
= 1 E
o -30% 3
1000 4]
gﬁ - 20%
ﬁ:i"
2004 L 10%
0K LT il A e , oo,
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16
MetDrats Chart of 17:41 01-Oct {Content_Server) Response-Time Seconds Greater

Megalodon Challenge - My Solution Philip Storey

Response Time Histogram (Test Run 1)

In test run 1, we see that most first transactions

ContentSvr Response-Time Distribution [[server [overan

. Wednesday 15-Nov 01:49:40 to 01:50:40 totzl 4204
are very fast but the server takes a little longer to Request: blk{127]-blk[Z00]
handle some transactions. 008 %eqy 1 aasesses 19
1800 4 Pl
001 80t
90% of the 4204 are under 0.03 secs and the c
. 1400 4 R0 2
average is just 0.0215 secs. 5 N i
o 12004 FEI T
o w
& 1000/ Lege, OO
Packet losses add 0.3, 0.5 and up to 0.9 2 ool i =
seconds to each transaction. 2 oo
_ 30 E
L]
400 4 Y
200 e
':'_ il Lt 1 —— :,::
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
MefDats Crar of 15108 01-0cf (Content_Saner; Response-Time Seconds Graater
Transactions ContentSvr Overall Trans Times, Throughput & Transactions in Progress |
1.0 Tranzaction affected by a network abnormality r S0 r 120 X
B Reguest: blk[127]—blk[3x00] - |
0.9 -~ A = a5 .
05 / N ~ AN Y L R S
= !) ', M P | L '
é 0.7 / 1~i - il H ;’ \\H ,' \ If \ .f'ﬂ-ﬁl If_,_\ ,\ /f\ - |
8" :) et
& ’ / A -’ VAR / R g s [
08 ! N v/ L S L N AR
£ sl] = gem e =N W W w l-at .- - P P
i ! = | o =
04 . - 5 205 g
e o
%”-3' +’ o e Wlls 0 Tghe WG wmYhe gl "aels el ; e F 2
o |
0.2+ ,l' L . l i u = | u " II\ F10
: | [| - 20
0.1 | | v 1 i -5
| [1] |
i | P [l 1 |
0.0 _) K Lo
01:45.40 01:45:.45 01:45:50 01.45:.55 01:50:00 01:50:05 01:50:10 015015 01:50:20 01:50:25 01:50:30 01:50:35 01.50:40
MefData Chan of 12231 12-008 (Comerd_Sener) Wednesday 15-Nov
Megalodon Challenge - My Solution 54

Philip Storey

Response Time Histogram (Test Run 2)

Even in test run 2, we now see that the server ContentSvr Response-Time Distribution [sever [o:)
eanssaan 13-Moy UNIoa c+ 30 =
takes longer to handle each of these Request: blk{127}-blk{Zood
transactions when it is already processing more 0. 124t seck ik o
than 10-15 of them. The see the “waves” as the - i o
load moves up and down. 7004 ! .
E 200 ! I T .%
a ! ! B0t B
Even so, 90% of the 6816 are under 0.3 secs 2 = -
and the average is 0.125 secs. 3 wofff g -
=] rate o
2 200K z
a H L30% §
Packet losses add 1.5 to 3 seconds to each 200 {[o
transaction. oo it 1o
:' L = = e
0.0 01 2 D e
MesData Char of 17:53 01-00f (Comtent_Sener) Response-Time Seconds Grester
Transactions ContentSvr Overall Trans Times, Throughput & Transactions in Progress |
35 Transaction affected by a network abnormality r=0 r120,
B Reguest blk[127]—blk]3xmx] = — m |
= — -45 :
3.0 1 = —E — A
AN IR AN AN
o Voo SR = \J / oo |
C 2.5 ' S l'},f L acg
8 . L/ T B tao
@ Ifﬂ'. ! N B 30 5, @
o 20 I "-f,l' 2 E
E 25T te0 m
& 154 o c
2 , 205 a
=3 IJ - = |40 2
E 104 15 2
0.5 R
0.0 | | 0
01:50:40 01:50:50 01:51:00 01:51:10 01:51:20 01:52:00
MefDta Can of 12:32 12400t (Comerd_Sener) Wednesday 19-Nov 6,816
Megalodon Challenge - My Solution Philip Storey 55

Response Time Histogram (Test Run 3)

In test run 3, we now see the initial “waves” but
then the rise up off the bottom as the number of

Reguest: blk[127]—bilk]300]

ContentSvr Response-Time Distribution [sever [] Gversi
Wednesday 19-Mov 01:52:00 to 01:54:00 total 11428

parallel transactions rises above 50. We still 1 1o
“ » . . 504 ral
have “waves” but with a higher base. = w
400 FE0
[
350 FT 9
Even so, 90% of the 11,489 are under 0.8 secs E s .
H] FE T
and the average is 0.515 secs. S -
E :-:l 4-:1:,%
. T LW raSe @
Packet losses still add 1.5 to 3 seconds to each 2 el s, B
1 [
transaction. 10, 205
50 F0
i} L - Byl
0.0 0.2 0. B 0.8 1.0 1.2 14
MefData Crar of 1518 01-0cf (Content_Saner; Response-Time Seconds Graater
Transactions ContentSvr Overall Trans Times, Throughput & Transactions in Progress |
4.0+ Transaction affected by a network abnormality —a —= reo r120,
B Request: bk[127]—-blk[3xx] g I
3.5 [&0 !
J. I/H‘ / T//'.\MI\J/A\[/\'L 1001
B30 : \\J' F70 |
g f 9
o e -80 o -30
o = A T — [
: ! 8|
= 2.0 : FE0 @
s ! L wy | &
i c ! - (=]
s 1.5 4 ! & &
% |'J "' ' b 30— 40 &
o 1.0 . . |
I 3 - = 2']
. - F20
0.5 1 j - _ . 10
= I A
0.0 A4 A , : . 1o L
01:52:00 01:52:10 01:52:20 01:52:30 01:52:40 01:52:50 01:53:00 01:53:10 01:53:20 01:53:30 01:53:40 01:53:50 01:54:00
MNefData O of 12:33 12400t (Comerd_Sener) Wednesday 15-Nov
Megalodon Challenge - My Solution Philip Storey 56

Response Time Histogram (Test Run 4)

Response-Time Seconds

In test run 4, we see the rise up off the bottom ContentSvr Response-Time Distribution [[sever [Joverst
. Wednesday 15-Nov 01:54:10 to 01:56:40 =
straight away as the number of parallel Request: blk{127]~blk{Zood
transactions rises quickly to 80. We still have the] 08078 secs i 0628 sec3 o
“waves” with a higher base. . o
700 FEI
N T 2
Even so, 90% of the 14,167 are under 1.0 sec § oy -
1 H 8 T
and the average is 0.8 secs. Interestingly, the 2 51 e
shape of the histogram chart is narrower than £ 001 -
test 3. 2 300, -
2001 0% °
Packet losses still add seconds to each affected 100 -
transaction. o b o . _- Mo
:|:| 0.z 0. . . 2 1. 16 18 2.0
MetData Crar of 1827 0100t [Comen aer'.er Responze-Time Seconds Grester
Transactions ContentSvr Overall Trans Times, Throughput & Transactions in Progress |
4.5 Transaction affected by a network abnormality r120 r 140,
B Reguest blk[127]—blk[3xox] —a I
404 = — _._ '
/ [Lioo [190
3.5 ' '
I
3.0 4 &0 § 1o
5 @
254 o 80 E
e |8
2.0 | Té" B0 g
1541 o Lag B &
! I'. Lag O
1.0 4 ‘]
0.5 .I I} B 20 |5,
e ll
0.0 ! ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 0 Lo
01:54:20 01:54:40 01:55:00 01:55:20 01:55:40 01:56:00 01:56:20 01:56:40
NefDta Ciar of 12:34 124008 (Comerd_Sener) Wednesday 15-Nov

Megalodon Challenge - My Solution Philip Storey 57

Response Time

Histogram (2" Transaction)

I Tranzaction Description Plot | Cit Avyg | Count | Req Bytes | SecsMin | Average | Maximum | Rep Bytes | End Avyg | End Max
4 Request: blk[158]-blk[E]: blk[4x] Wes 0002 36344 1580 00000 0009 9830 5.0 0012 9980
52 Request: blk[158]-blk[5x] Yes 0002 128 1580 02874 0320 1208 §1.0 0320 1.208
Above we see that there are 2 “types” of the ContentSvr Respnnge_ﬁme Distributior] server [overall
second transaction. Both types can be slow, Selected transactions Wednesday 19-Nov 01:49:44 to 01:56:39 total 36472
many due to losses + retransmissions. 2 9 4 e -100% _
S 84T | -90% g
. . 74 H : F80% 3
To the right, we see the majority are fast — but £ 5. M | L7005 2
about 1000 of them are slow, dragging the mean E s i | -60% 2
. -50%
out to 120ms. B 4 - i L 40% E
N ; F30% &
Below we see that they aren’t noticeably £ 27 | -20% 2
. E . =
affected by load. The slower ones are consistent | | a | Hm% O
- not due to a random mechanism. 0.00 : 0.02 0.03 0.04 0.05 0. ua
MetData Chart of 13:15 11-0ct (Content_Servefesponse-Time Seconds Greater
_ ContentSvr Overall Trans Times, Throughput & Transactions in Progress .
18+ - Transactions — - 50 1200
Transaction affected by a network abnormality I
14 Request: blk[158]—* 45 !
7 |
M M\\ N\MM ” 100!
= 12 : I
= Lag 4
@ f ' . [20
o 1']' ! Il, ll' I| |I| _30 E_.l §
ak] . . fl
£ b f ‘ c OO -
= 0.81 : | | .f 1l : 25 e
2 06 o . Co L2g 2 S
S | ; v S ly @
@ b ; j - -15 e
0.41 : |' n n
* L 10
- 20
U bkt Dobabhddide k”lun iul i ii" Uy bikkadibh i lu
ool il I Linky 2 Udrddzd, nd (Tal | B

01:50:00
NetData Char (Confent_Saner)

01:51:00 01: ':2 00

Megalodon Challenge - My Solution

01:53:00 01.54; I:II:I
Wednesday 15-Nov

01:55:00 01:36:00 01:57:00

Philip Storey

Second Transaction Types

The difference between the two “types” of the second transaction is whether the response is delivered in two packets or just
one (which we would expect for just 51 bytes). Out of 36472, only 128 have a single packet response.

Below is one example of each type. First, the [158] request gets the full [51] after 300ms, second, the request gets [6]
immediately, but the remaining [45] takes ~500ms, forcing a client delayed Ack at the 200ms mark.

Copyright Measure [T Server packets appear in a socket 2 units above client packets on v-scale.

Packet T|m|ng & packet's height within a socket band is proportional to its length.
Seconds
0 0.02 0.04 0.06 0.08 0.1 012 014 0.16 0.18 0.z 022 024 0.26 0.28 0.3 0.32 034

Reguest: blk[158]-blk[5:x]

Packet seq 210799: data

= P D: 23054 dBlock. followO : 15125 from 01:50:18.0380 to 01:50:18.3509 4 non-data
2 : » endBlock, Tolowln, | rrans: wrangleT/TCP Request: bIk[158] -- blk[5x] | |Packet seq 211972: data W data
2 21 Protocol: wrangleT/TCP Dats: bIk158]: resp bS] IP ID: 4519 . endBlock S L
w Time: 01:50:18.0380 Client; WebAppSyr 0.0020 secs Protocol: wrangleT/TCP [respnse mag time
Round-trip: 312.8 m=s Reguest 158 bytes —{ Time: 01:50:18.3509 ﬁ_
Length: 216 bytes (data 138) Server: ContentSvr 0.3128 zecs Round-trip: 0.0 ms
9 Function: bIk[158] - Response: 51 bytes Length: 108 bytes (data 51)
¥4 4 Function: bIk[51] - X
01:50:18.06 015001812 015001818 ©0150:18.24 ©01:50:183 " 01:50:18.36
M=tDista Chart {Content_Sarver) Wednesday 19-Maov 13 packsts
Copyright Measwre |T P Server packets appear in a socket 2 unitz above client packets on y-scale.
PaCkEt Tlmlng A packept's heightpvpf ithin @ socket band is proportional tl:E'rts. length. Y
Seconds
0 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4 0.45 05 0.55 0.6
; ; ; A ; ; ! SETVEr
t : : : - : : | ContentSvr:5433
ok Lonn * Reguest E connection 153402
Key: 15497 from 01:50:18.8986 to 01:50:19.4130 E E . | wrangleT/TCP
Trans: wrangleT /TCP Request: & non-data
E 5 Packet seg 215621: data blk[158] -- blk[E]: blk[4x] Packet seq 217917: data W data
s] IP D 5536 endBlock Data: blk[158]; resp bik[E]; hlg[;;] ::I?IIE:: | 6443 | T”.épendﬂluck E_S);lr'.rer ime
o Protocol: wrangleT/TCP Client: WebAppSwr 0. SECE rotocol. wrangle = "
Time 01:50-15.9025 Request 158 bytes L Time: 01:50:19.4130 i L= respnse msg tme
Round-trip: 198.0 ms SErver: ContentSyr 0.0040 secs . | Round-trip: 0.0 mg - | WebAppSwr58458
1 Length: 64 bytes (data &) Response: 51 bytes 0.5105secs Length: 103 bytes (data 45) © connection 153493
Function: bIk[§] - Function: blk[45] - | wrangleT/TCP
: : . . $; : ; . : ; | client
01:50:18.9 01:50:19 01:50:19.1 01:50:19.2 01:50:19.3 01:50:19.4
MetData Chart {Content_Server) Wednesday 19-Mov | 5 packets

Megalodon Challenge - My Solution Philip Storey 59

Test Run 1: First & Second Transactions

Now plotting only the first and second transaction types — and only during test run 1.

The mechanism that causes the “slow” responses to form horizontal bands at the ~300ms and ~500ms times clearly affects
both of these transaction types in the same way.

If these are the two components of an SSL setup, then perhaps the SSL mechanism should be examined more closely.

1.0

0.9

0.8

Response-Time Seconds
= = = = =
L RES £ [5} =]

=
[

0.1

0.0

01:49:40

Transactions
Transaction affected by a network abnormality
Reaquest blk[1581-bIKET blk[4x]

m Request bIk[127]-bIk[300]

ContentSvr Overall Trans Times & Throughput

01:49:45 01:49:50 01:49:55

NetData Chart ({Content_Server)

Megalodon Challenge - My Solution

01:50:00

01:50:05 01:50:10 01:50:15
Wednesday 19-Mov

01:50:20 01:50:25 01:50:30

Philip Storey

__ :-_-':I

-2560

-200

- 160

100

Responses f sec

-50

01:50:35 01:50:40

3,129 trans

60

Application “Sleep” Behaviour

The client and server (Web Server and Content Server) applications experience
regularly occurring “gaps” — where they both seem to “sleep” (i.e., stop processing at
the respective application layer for around 300 ms).

The “gaps” happen around every 4.5 seconds but vary between 4 to 6 seconds.

During these “gaps”, the TCP stacks at each end are still working, but the applications
are not. Thus, the only packets observed during these gap periods are TCP type
packets (Syn, Syn-Ack, Ack).

Any transactions that are in progress when a “gap” begins are carried over until the
“gap” ends. Effectively adding 300 ms to all such transactions.

If it was just at one end, we might infer some sort of regular garbage collection routine
in a server. However, | have no explanation for a mechanism that synchronises such
behaviour across 2 separate servers. Something to do with virtual servers perhaps?

Application “Sleeping” Behaviour

In the orange ovals, we see very regular time periods where application activity stops (for both the Web Server and Content
Server at the same time). No connections or transactions begin or end in these “gaps”, all existing transactions span across
the “gaps”. The “gaps” occur at regular intervals, not correlated with the pink-background packet loss periods.

On the next slide we’'ll zoom-in to the 5% gap here — and see that the only packets within the “gaps” are at the TCP level
(Syns, retransmissions or Acks) — not at the application level.

Why would BOTH the client and server applications go to
“sleep” at the same times?

The “gaps” (inside the yellow ovals) occur at very regular
intervals — across the whole 10 minute period.

165

qn

e Seconds

Response-i=

| —3yn or 3yn-4ck packet los

I

L
-
=

Cq‘ntentSw Overall Trans Tlmes Throughput, Cnncurrent Connectinns & Event Rates

Time Eands
@ data packets|lost

Event Rates

160

165

- 160

145

=

140

;&

I -‘-|)
w:ﬂ”l | |||'| hl'

- 135

]
— == a4 —
——

S MR
i 1.||||”| Akl
|' |

Concurrent Connections

- 130

01:54:52
NetData Chart of 18:35 02-Oct (Content_Server)

Megalodon Challenge - My Solution

01:5576

" 55 0a 01:55:12
‘“.fednesda}r 19-Mav

01: 54-55 D|55EIEI

Philip Storey

T
[a}]
]
=]

- 12000

- 1000

L 200 |

Responses f sec

- 400

-200

12,896
62

Application “Sleeping” Behaviour

Zoomed-in to a total half second period, we see a ~300 ms period (light green box) where no transactions begin or end, all in-
progress transactions span across the “gap” (as indicated by the black horizontal lines).

The popped-up “transaction” inside the “gap” is actually a 3-sec TCP connection setup — where we had a retransmitted Syn

from 3 seconds ago (this is TCP acting,

These transactions
completed before the “gap”.

not an application).

This unlucky transaction would be
very quick if it didn’t span the “gap”

These transactions began
before or after the “gap”.

ContentSvr Overall Trans Times & Concurrent Cannections

Seconds
0.05 01 0.15 0z 0.25 0.3 0.4 0.45 0.5
1
3.5 IT 1 1T TT7 11 T R L| I LITI 160
155
- — =
I - 150
Transactions Key: 145480 from 01:55:08.7694 to 01:55:11.7813
; hrol Trans: TCP Open Conn:
95] Transa :t.mn affected by a network abno Syn WScale: 8 SelAck MSS:1460 i
wn # Reguegt blk1271-blk 300)) 145
= m Requegt blK[154]; bIk(1284]-blki4; off =~ SymAck M55-1460 Selack WScale: 8 - Ack 2
S + Request bIK[M17E] blk12841-blk 2ol bl Diata: . ."\.":C_E!!f _:"ELHHCI'.. r-1uu.'1-t|::-1-f|:.: :‘qu.:CL WScale: 8 E
(E 50 w Request blk[154]; blk[1284]—blk[4xd: bl En?nnectlcn 1‘-.:Ei=. 192.168.1.1 == 10.0.0.10: 5433 - 140 g
“71 o Requegt blkI1707; blk[1284}-blkidd; bl Clent: — WebAppSur =
£ * Requegt blk[170]; blk{1284]-blk]4xq; bl Request. 70 bytes e Ss o
= # Open Clonn: Syn WScale: 8 SelAck Msq Server: ContentSwr 0.0147 secs r135 %
& Response. 70 bytes 0.0000 secs S
w 1.5 130 =
= =
=4 2
o S
“W- Pl e——-4-4-{ 155
—— 4 4 4 Why would BOTH the client and server applications go to
3 “sleep” at the same times? 120
C——
SR : F
1 i '] - 115
i s o K
e L : . : : Y - 110
01:55:11.7 01:55:11.8 - 01:55:11.8 01:55: 01:55121
MetData\Chart of 1735 07-Oct {Content Server) Wednesday 19-Nov 1149
Megalodon Challenge - My Solution 63

Philip Storey

Application “Sleeping” Behaviour

A Packet Timing view (client packets along the bottom, server along the top — 138 connections) of the same time period
shows no data packets in the ~300 ms “gap”. Only TCP level Syn-Ack and Ack packets (blue diamonds) occur inside the
“‘gap”. These are server “delayed Acks” for client data packets that were transmitted before the “gap”.

That one data packet in the green area is a 127-byte first request that the client TCP stack must have had ready-to-go in
response to the server’s Syn-Ack.

Packets are flowing constantly in
both directions.

One 127-byte data request here — associated with
that server Syn-Ack (see next slide).

Copyright Measure IT

Packet flow continues as
normal.

. Server packetz appear in a socket 1359 unity above client packets on y-scale.
Packet Tlmlng Pa u:k&tspin diff&r&ﬁ?cunnemiuns appear in Juccessively hFi}gh&r sockets.
Seconds
0 0.05 01 0.15 0, 0.25 0.3 0.35 0.4 0.45 0.5
/
250 1 o
g * » & » ' '
s v iy
$. i
& |
||
* * |
150 4
o /
e
[}
(=]
@ A=
100 4
- 4 non-data &
| e : e
ge o= & < Final hoid
% Reset 3
30 % Syn retransmitted &
= reguest mzg time:
server time
= respnse meg time
Fin-wait state
01:55:11.7 01:55:11.8 01:55:11.9 ' 01:55:12 01:55:12.1

NetData Chart of 17:51 07-Oct (Content_Server)

Wednesday 19-Mov

1,148 packests

That Single Data Packet

This Packet Timing view of the connection containing that one data request packet (circled). We see that the client began the
connection 3 seconds earlier — and the data is the first data packet in the connection.

It is the normal 127-byte request and we see a 200 ms delayed server Ack then the 3031-byte server response over a second

later.
Packets are flowing constantly in One 127-byte data request here — associated with Packet flow continues as
both directions. that server Syn-Ack (see next slide). normal.

Copyright Measure [T . Server packets appear in a socket 2 units/ abowve client packets on v-zcale.
Packet T|m|ng 4 packet's height within a socket band ig/proportional to its length.
Seconds
nas 1 15 2 258 3 45 5
31 DpEnCuna iR e R EElNek MEE BBy Aak a5 140 Bk e R esle iR s Ak Reguest: blk[127]<blk[300
4 non-data |
W data I 7 7
: a;ge‘t Packet zeq 2066815: Syn Key: 145918 from 01:55:11.7816 to 01:55:12.8637
z Syn retransmitted IP IO G405 Trans: wrangleT/TCP Request: blk[127] -- blk[Jxxx]
+ |#* Dup-SAck A . -
2 | @ selective ack Protocol wrangleT/TCP E;E_ltﬂ-t_ E:rk[:]i?]. ;ESD BIk[3031]
2 (m data followed gap Time: 01:55:11.7813 Ient: EDAPPSNT
oW l_data filed & gap. Length: 70 bytes Reguest. 127 byies
= request msg time Function: _Wax Segment Size: 1460\ Window Scale: 8\ Selective Ack permitted server: ContentSwr 1.0857 secs
O servertime Response: 3031 bytes 0.0013 secs
B respnse meg time /
Packet seq 2066817: data 45
Packet seq 2066805: Syn retransmitted P 1D 20482 endBlock
Packet seq 2046461: Syn | IPID: 20477 reTx Protocal wrangleT/TCP
IP 1D 8315 Protocol: wrangleT/TCP Time: _ 01:55:11.7816
Protocol. wrangleT/TCP Time: 01:55:11.76885 Round-trip: 202.6 ms
Time: 01:55:08.7694 Length: 70 bytes Length: 185 bytes (data 127)
Length: 70 bytes Function: Max Segment Size: 1460\ Window Scale: 8\ Selective Ack permitted-jLo nction: blk{127] -
Function: Max Segment Size: 1460\ Window Scale: 8\ Selective Ack permited i?]
T T * T *
01:55:08 01:55:10 01:55:11 J1:5512 01:5513
MztData Chart of 18:18 07-Oct {Content_Server) Wednesday 19-Mov 35 packets

Megalodon Challenge - My Solution

Philip Storey 65

Load Generator to Web Server

Next we’ll look more deeply into the Load Generator to Web Server traffic. This is the
“front-end” where the Web Server to Content Server is the “back-end”.

There are some differences in behaviours of the Load Generator to the Web Server,
particularly in the connection setups.

There are more concurrent connections here —and they are initiated all at once.
However, there are far fewer total connection initiations across each test run because
once initiated, each connection here triggers multiple sequential transactions (10 —
20).

Each front-end transaction here must correspond to multiple back-end connections
and transactions.

Commentary

A typical connection request from the Load Generator to the Web Server involves:

(Note that these use port 443, so less need to hypothesise about SSL).

* TCP 3-way handshake.

* First data exchange: [61] byte request — [4513] byte response (SSL certificate?). All very fast.

* Second data exchange: [267]+[59] — [59] (SSL cypher?).

* Several (sometimes 20) large transactions: [362] — [286650].

* Termination by: Client 399-bytes data - Final — server Ack — server tens/hundreds KB data — client Reset.

All the connections are initiated at, or near, the very start of each test run.

There are therefore far fewer connections and SSL setups — and they are fast because they occur
before the load ramps up.

The responses to the Load Balancer’s data requests do get progressively slower though, because
the back-end requests to the Content Server get slower.

All the observed packet losses are between the tap(s) and the Load Generator. There is no regular
pattern to these loses though (unlike the Content Server flows). The losses could be caused by a
firewall, load balancer or other network device on the way to the Load Generator.

The transactions at the start of test run 4 take longer than transactions later in the test run
because the Web Server begins with only 100 or so connections to the Content Server. The 200
transactions that initially arrive from the Load Generator are queued up. As more Content Server
connections are initiated over time, more back-end transactions can be handled in parallel
(making the front-end transactions faster due to spending less time in the queue).

that includes connection setups. We see the connection lines rapidly rising to 25, 50, 100 & 200 respectively

All Load Generator Transactions

Here are all 4 test runs, showing only the Load Generator traffic. There are just 5,722 transactions here — and

for each of the 4 test runs. The packet loss behaviour is more random (not every 5 secs). The transaction/sec
figures (RHS scale) are greater at the beginning of each test run (presumably as all the connection setups

fire off at once). There are far fewer pink and orange transactions (SSL certificate & cypher).

The transactions are significantly slower in test run 4 where the load is greatest.
Note: The packet losses are all “upstream” (i.e., between the tap and the Load Generator).

. e n
= [y} =

Lol
im
1

Response-Time Seconds

—
n
1

10 4

Ll
=]
1

=)
im
1

=]
L=
1

Ti
=

ime Ba

7 Transactions || 1
Transaction affected by a network abnormality
Request *~blk5: (11
1 m Request bIk[G11—Dlk[4:00]
+ Request blk[37]; blk[325];

m Request blk[37]; blk[@EE]—blk[Ema}: blk[

nds

data packets

LoadGen Overall Tran

lost

BIk[37T; conn half clos

Guoood; hll::l[jx]?oo;

s Times, Throughput & C
i |

oncurrent Connections

il
| |IIII
T

01:50:00

T 01:51:00

NetData Chart of 17:15 12-Oct (Content_Server)

Megalodon Challenge - My Solution

04:52:00

Wednesday 19-Mov

Philip Storey

— I
il —t II
: iL_E BT ___,_:'<|I I|
- PN
I "'.J'
] |
|
01:53:00 01:54:00 01:55:00

I
H

01:56:00

-2560

-200

-160

=100

50

0

Concurrent Connections

50

T
s
=

T
L
=

-70

F60

Responses f sec

T
M2
=

=10

01:57:00

68

Load Generator - Statistics Table

This snippet from the top of the Statistics table shows the transactions in order of response size. It also shows the colours
(LHS) that will be used on the following slides. The pink transaction (61 byte request — 4513 byte response) is the first one in

every successful connection. The orange one (158 — 51) is always the second transaction. Other transactions are closures or

requests with 286 KB responses.

| 0] |Trﬂnsac:tiun Description

| Plot | Cht Awg | Count | Reqg B',rt&sl Secshin |A\.f&rﬂg&| r.1ﬂximurr|| Rsp Eh,rt&sl End Avg | End r.1ﬂx|

53

348

= 346
= 1007
o 1103
= 1182
= 347
= E03
= 1173
= 1153
- 1184
o 1170
= 1172
+ 1104
+ 11E7
» 1166
AT
= GB04
= 0BG
= 543
- 594
=* BS2
= 1161
= 1033
. T
= 374
= 1107
= 70
= 1086
= B&0
* B9
A XX

EET

Request:
Request:

Blk[326]-blk[5]
Elk[267]; bll[53]--bik [5x]

Tes
Tes

Open Conm: SenwScale: 4 Selbck M55:1460-5yn-Ack M55:1460 Selbck \Wicale: 8. Yes

Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:
Request:

.

CLNEATT LN EAET T

Blk[33]-blk[12x]

blk[E]; blk[378]; blk[37]; conn half closed--blk[k]

blk[E]; blk[415]; conn half closed--blk[2mx]

Elk[B1]-blk[4xx]

blk[37]: blk[325]; blk[37]; conn half clozed-
blk[37]; blk[325]; blk[37]; conn half closed--
blk[37]; blk[325]; blk[37]; conn half closed--
blk[37]; blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]: blk[37]; conn half closed--
blk[37]: blk[325]: blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
blk[37]: blk[325]; blk[37]; conn half closed--
bilk[37]; Blk[325]; blk[37]; conn half clozed--

Blk[B]; bIk[37E]-bll[1 mm]: bk [1ammnm]

bk [D]

blbe [7]

bl [s]
blke []
blke []
blke []

bl [B]

bilke [Em]: bll [2]
bilke [Em]: bll [Smm]
bilke [Em]: bll[Foamm]
blke [7]

bilke B blke[1]
bl [Siss]

bl [Ssn]

bilke [sstmne]

blke [mnmne]

blk[37]; blk[325]--blk[1msmms]: bll[Bumez]; blk[Bxmma]; bll[2umms]

bilk[325]--blk[1 2] bk Fetmim]; blk[7]

blk[B]; bll[378]--bll[Twmmmm]: bk Jummn]; bll[1smmmm]
bill:[37]: blk[325]-blk [1 mummm]; blke[Bumn] [2]; blk[2mem]

Blk[B]; bIk[373]-bilk[Exmn]: blk[Zummmn]

blk[37]; bl [325]--blk [T msmms]: Bll[1mmmmn]; blk[2mmas]

bilk[325]--blk[1 mwm]; blk[dumn]; blk[T]

bilk[325]--bilk[2mmmn]; Blk[2mmmm]

T 1

Megalodon Challenge - My Solution

ez
ez
ez
ez
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes
ez
ez
Tes
Tes
Tes
Tes
Tes
Tes
Tes
Tes

]

Philip Storey

[0.003 14 326.0 0.0a00 0.004 0.ma 5.0 0036 0226
0032 1 336 326.0 0.0a00 0.0a1 0.m3 55.0 0.385 2.505
334 78.0 0.000 0.0 78.0 n.oza amz

44 93.0 0.000 0.002 145.0 Q.00 0002

[.006 14 421.0 08604 £.134 9124 SB3E.0 15473 32351
[0.003 1 421.0 73724 7.372 7.372 S236.0 11.050 11.050

249 £1.0 0.0000 [.003 0.022 4513.0 [.033 0514}

0.439 1 393.0 28548 2.865 2865 57320 E.285 E.285
0.231 2 393.0 59937 £.351 E.703 F2400 11608 11.828
0141 4 393.0 07664 5.104 8903 141180 14781 24589
[0.036 3 393.0 7.5EEZ 7932 8330 24160 13033 TEEDE
0.087 2 399.0 48219 B.656 8490 369240 1F5YF ZEEEY
0100 5 399.0 E.0054 7221 B7EY 474944 14518 24204
0126 B 399.0 20739 6791 12583 B5401.3 29935 42582
0.031 1 393.0 29550 2.955 2955 BERBO.O 1787 17E17
0.030 1 3990 24434 2.443 2443 F4FE0 12141 12141
0123 1 3990 1.8754 1.875 1878 729240 11945 11.945
0.077 10 3990 0747 3592 8387 7EB476 BE06 17.032
[.096 g8 3990 05492 1.841 3377 7BEsrO0 7203 10574
005949 78 3990 0.0251 2111 B.OOE 8545849 E.304 15E83
[0.0598 20 3990 049713 4.291 8484 948952 9525 26.291
0.077 208 3990 00153 5.248 1B.BE3 1334691 17729 48EE2
0.087 21 399.0 1.4863 £.047 9633 232663 14430 26532
[.004 15 3840 82030 13487 26583 28575871 13632 26536
0134 1 Je2.0 123218 12322 12322 2866500 12330 12330
[.006 1 3260 54460 5.445 G446 28EE50.0 £.421 £.421
[0.003 1 3240 119245 119256 11925 2866500 12643 12643
0.0339 B JE2.0 E04E3 7.853 9333 28E650.0 F8E3 10010
[.006 1 3840 89057 8.906 8906 286E50.0 11535 11.555
0110 4 JE2.0 35467 5.273 7033 28B650.0 5279 7042
[0.002 1 3260 44383 4.433 4.433 28E650.0 E117 E117
[.004 7 3260 47470 7852 14508 286650.0 8364 14825

A ane

a

A

4 FE

ER L]

ER T

ST

EE N

47 Amn

69

A Load Generator Connection

This “Waterfall” (or Gantt style) chart displays all the transactions within one of the connections. Notice the
first & second very fast SSL setup transactions, then the repeated same large responses taking from 2.5 to
11 seconds. A new one begins immediately after the previous one completes.

The yellow indicates that this is all server “thinking” time (96.3% of the whole chart). Note the other timing
breakdowns too.

SSL setup? Same request/response repeatedly, directly after each other. The ending request gets a large response.
Copyright Measure IT . . .
Time Summary and Transaction List —
Client 1.5800 2.1%
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Semiee 714707 95.3%
—_— \ A A A A _ A . A A A ; c
St o / Service processing time r‘mggrrfl‘_ﬁf;; H;ﬁ? a:g%
cetzlied Total 74.2233
Diata Bytes r T T T T T T T T T T T T T T
Request Resp 0 E%eu:qnds I*I.EI 15 20 25 30 35 40 45 A0 55 a0 G5 70 75 a0 Server: port Protocol ConnlD
61 4513 | Requeft blk61]-blkl4iad] T clent delay / block 2.1% oo WebAppSwvr: 443 wrangleT 284833
326 59 Request bIE[267]; DIk[59]—-DIk[5x] — EE E‘;‘El?jﬂiﬁ%:'gﬂ? E-EE ;E WebAppSwr: 443 wrangleT 284933
325 287K | equest bIk[325]—blk[1xo0c]; blk] 1000 E= request msg time 1.58 WebAppSur: 443 wrangleT 284933
362 287K Request bIk[27]; bik{325]-blk[2w0000] — e oRae D0 '3l webAppsw:443 wrangleT 284933
362 287K Request: bIK[3AT]; bIK[325]-bIk[2w000x] servertime 85.3% Web&ppSvr: 443 wrangleT 284833
= respnse megtime 0.1%
362 Z28TK Fequest bIK[37]; bIE[325]-blk[20000] . . ¥ WebAppSvr: 443 wranagleT 284933
362 287K Request bIk[37]; BIK[325]-blk[2:0000] WebAppSvr: 443 wrangleT 284933
362 Z28TK Request: blk[37]; DIK[325]—-blk[20000] WebAppSvr: 443 wranagleT 284933
362 28TK Request: blk[37]; blk[325]—blk[20000] WebApp3vr: 443 wrangleT 284933
362 Z28TK|Request: bIE[37]; bDIK[325]—blk[Z0000] WebApp3vr: 443 wrangleT 284933
362 Z28TK|Reqguest: bIk[37], bIK[325]—-blk[Z0000] WebApp3vr: 443 wrangleT 284933
362 Z28TK|Reqguest: bIk[37], bIK[225]—blk[20000] WebApp3vr 443 wrangleT 284933
362 28TK|Request: blE[37]; blk[325]—-blk[Z:0000] WebApp3vr: 443 wrangleT 284933
362 Z28TK|Reqguest: bIK[37], bIK[325]—-blk[20000] WebAppSvr: 443 wranagleT 284933
362 28T7K|Request blk[37]; bIK[325]-bIk[20000 WebAppSvr: 443 wrangleT 284933
362 28TK|Request bIk[37]; bIK[325]-blk[20060] WebAppSvr: 443 wrangleT 284933
362 287K|Reguest: bIK[37], bIK[325]-blk[20060] WebAppSvr: 443 wranagleT 284933
399 130K|Request: bIK[37]; bIK[325]; BIK[37], conn half closed--blk[1:0000] WebAppSvr: 443 wrangleT 284933
6,179 4,435K 015050 0 015100 015110 015120 0 015130 015140 015150 01:52:00
M=tDiata Chart of 14:01 12-Oct (Content_Sarver) Wednesday 19-Mov 18 transactions on 1 connection in 74,2238 sacs

Megalodon Challenge - My Solution Philip Storey 70

Example of Packet Losses

This Packet Timing chart is from the middle of a transaction containing losses and retransmissions. Top row is the Web Server
here, bottom row is the Load Generator. The hollow red squares surround packets that were seen in this capture — but we know
were not received by the client (because we also see SAcks). This means that the packets were lost between the tap and the
Load Generator (through the Load Balancer?). The “loops” connect packets with their retransmissions.

Of interest is the small cluster of retransmitted packets, where the original [1448] byte single packet is re-sent in two packets of
[798]+[650]. I've seen this behaviour in F5 load balancers — but here were are supposedly at the Web Server interface.

All packets are 1448 bytes (payload). 1x1448 -> [798]+[650]
E”“r'“m"&ﬁ"stfl_ t_ Connection Utilisation and Packet Timing — = o
0 q%‘ o 30% 40% 70% 80% 100% Servertme 0.0825 165% 16.5%

Reszponses 03888 774% 593.8%

SErVer processing idle 0.0308 &.2%

‘]

i i

864612: data letlansmltted
wrangleT/TCP

equast: blk[325] k] 2w © 1518 bytes (data 1448)
Packet seq 85231? data retransmitted
ll Protocol: wrangleTITCP

o Packet 5eq

(o8]
1

Reguest

Length: 268 bytes (data 79E)
Cength. 720 byles (data 650)

non-data

| data retransmitted
selective ack
lost in transit (10}
_ =erver time
= respnse meg time

Socket
~

Packet seq 862913: selective ack

14 Protocol. wrangleT/TCP

Length: &2 bytes

Function: Selective Ack: 2053548557 2053554340

01:52:17 5 ' 01-52:17.6 ' 0152177 ' 01:52:17.8 ' 01:53:17.9
MetData Chart of 18:06 12-Oct (Content_Server) Wednesday 19-Mov 354 packets

Megalodon Challenge - My Solution Philip Storey 71

Example of Packet Losses (Zoomed)

This is two views of the same packet flows — a small portion of the flow from the previous slide. Some retransmissions come
very quickly in response to the Selective Acks.

Copynight Measure |T

Seconds
o 0001 0002 0003 0.004

Packet Timing

Server packets appear in a socket 2 unitz above client packets on y-scale.
A packet's height within a socket band is proportional to itz len

gth.

4 non-data

— W data
=z 5 :da}a>rans&n'rrtad
o 2 _ selective ac
= 1x[1448] -> [798]+[650] [Jlost in transt (10)
= ch loop-d in meg
i e = respnse msg time
9 4
T 'ul T T ﬂ T T I'u T T ‘. T * T * T ’ T I’
01:52:17 528 01:52:17 531 01:52:17.534 01:52:17.6537 01:52:17 54 01:52:17.543 01:52:17 546
NetData Chart of 18:27 12-Oct (Content_Server) Wednesday 19-Nov 169 packets
——eva e Se ata Sequence & Window Size vs Time
160 12 segments in window rangleTTCP connection 285024 LoadGen (clt) -= WebAppSvr (svr) 140
T 1 normal data packet [
— W data packet lost in transit L
140 4 71 data retransmitted I | I 7 = | .
s ack packet - a a 1 . 120
—|— selective ack Client receive window -
— window lower edge . E | —2
w1207 count of duplicate acks S R 18 a z \ | L 100@
@ server receive window in packet seq 862745. non-data 13 g ?! = o
2100 4 client transmit window i a =
W —— client receive window 15 2 W
. 12 maximum-size segments -80
w504 selectively acked 14 g — o
1 EI lostin transit iz g Retransmissions i
@ server data bytes in flight 14 ; B0 =
Z 601 ' ' : =3 5
m =
= =
= 3 F40 2
40 4 1z 5'
18 20
; " 5 18 17 .
20 - 1 2 i l 20
i 28,162 bytes (19.4 =egments) in server transmit window '
0 13,032 bytes (5.0 segments) selectively acked 0
01:52:17.528 01:5217531 ' 01:52:17.534 | 0152:17.537 | 01:52:17.54 | 01:52:17.543 | 01:52:17.546
MztData Chart of 18:28 12-Oct (Content_Server) Wednesday 19-Mov
72

Megalodon Challenge - My Solution

Philip Storey

Connection to Web Server from Load Generator

This is the one instance in the Load Generator traffic where an initial Syn was lost. We saw the Syn-Ack
from the Web Server (circled) — but the Load Generator did not get it. The Load Generator retried its Syns
many time very quickly (but the Web Server was now ignoring them because it already saw the first one).
The second Syn-Ack from the Web Server (after a 300ms retransmission timeout) made it through.

This Syn-Ack went missing on the way.

These retrans Syns were ignored.

But this Syn-Ack made it.

Copyright Measure IT

P Server packets appear in a socket 2 unitz above client packets on y-scale.
PaCkEt T|m|ng A packet's height within a socket bany iz proportional to its length.
Seconds
3.2

0 02 12 1.4

Open Gonn: Syn W5cale: 4 5alack

55: 1 480--5yn-Azk M55:1487 Salfck Whcale: 5 - fck

Packst seq 2424368: Syn Packet seq 2443601: Syn retransmitted * nondata

IP 1D 15238 IPID: 25972 relTx W data

Protocol. wrangleTiTCP Protocol: wrangleT/TCP & Sy

Time: 01:56:03.5636 Time: 01:55:06.5683 = _Syn retransmitted
Length: 78 bytes Length: 78 bytes onver tima) e
Function: Max Segment Size: 1480\ Window Scale: 8\ Selective Ack permitted! Function: _Max Segment Size: 1460\ Window Scale: 8\ Selective Ack permitted\ | | Bl respnse msg time

1 SEMVer
{ WebAppSwr: 443
connection 231777

wrangleT/TCP

Packet seq 2424367: Syn Packet seq 2440995: Syn retransmitted I LoadGen: 63802
IP IDv: 20224 IPID; 39234 reTx
Protocol: wrangleT/TCP Protocol: wrangleT/TCP . connection 231777
Time: 01:56:03.5635 Time: 01:56:06.1515]
Length: T8 bytes Length: 66 bytes wrangleT/TCP
Function: Max Segment Size: ‘HJEE‘ Window Scale: 41 Selective Ack permitted Function: Max Segment Size: 1460\ Selective Ack permittedy [

Bomomomow w W it Ll . = . . # ! client

01:56:03.6 01:56:04 01:56:04 .4 U1:bb:04.8 U1:b6:05.2 01:56:05.6 01:56:08 01:56:06.4

MztDiata Chart of 16:48 17/0%/15 (Web_Application_Server) Wednesday 191114 1% packsts
Megalodon Challenge - My Solution Philip Storey 73

Front-End & Back-End Together

Finally we’ll look at a few slides showing both front-end and back-end activities all
together.

* The first slide shows the whole time period.
* Second slide just test run four.
 Third slide just the start of test run four.

There are approximately 10 times more Web Server to Content Server transactions
than Load Generator to Web Server.

Each front-end (red) transaction here must correspond to multiple back-end
connections and transactions (blue).

If we had the original payloads, we would perhaps be able to match the reds up
exactly with their corresponding blues.

The slow ramp up of blue connections is worth some further examination by the
application owner.

Response-Time Seconds

NetData Chart of 18:31

Megalodon Challenge - My Solution

This Chart Tells the Whole Story!

The red transactions, connections & “TIP” lines represent the Load Generator (front-end) activity. The blue is
the Content Server (back-end). The four test runs are clearly visible and we see the correlation of red & blue.

Load Generator connections
ramp-up very quickly to ~200.
There are ~200 “Transactions in

The red transactions must be queued up
(since only 100 can be worked on at once).

But only ~100 of both to the Content Server.

Therefore, the initial red
transactions take longer
then the subsequent ones.

Progress”.
Servers Overall Trans Times, Jransactions in Progress & Concurrent Conngections
801" o ContentSur 250
& WebAppSwr y
=== f
Vi
704 Transactions F
Transaction affected by a network abnaormality w
« Open Conn: Syn WScale: 8 SelAck MSS:1460—Reset W 200 5
f0 4 - # Reguest bIk[37]; blk[325]; blIk[37]; conn half closed—blk] 6o E
m Reqguest bIK37T bIk[3251-blkGooad; bIkG0oa]; DIk 130000 [=
m Cpen Conn: 3yn W3cale: 8 SelAck MS3:1460—= ignaored 5
a0 4 =
: %a 150 @
. I .I' = 3
40 4 Ad " G
o1 5]
! of
100 @
)]
30 4 =
' 2
A =—— o
. - [
20 4 =
=
o
|_

hrm
*- d'l
A __.___.‘B'r_,p in] ﬂﬂ‘kh: 2

-

—_ | ——

01:55:00

01:51:00 01:52:00

13-0ct (Content_Server)

01:50:00

01:53:00
Wednesday 19-Mov

01:54:00

Philip Storey

: -50
rinasoniane s
i I
01:56:00 01:57:00
188,656
75

Test Run Four - Whole Story!

Zoomed-in to test four. All the initial red requests arrive at once, but the responses take several seconds to
get worked through. New requests take their place as they complete. Newer ones are (mostly) processed
more quickly (because we have more parallel blue connections).

All these transactions begin together. But end over many seconds. All these later transactions are faster.

Servers Overall Trans Times/ Transactions in Progress & Concurrent Connections
801 |e ContentSvr 950
& WebAppSyr
== F;’
. 4
70 - &
wr
200 5
] o
50 rgnsactions Z
w Transaction affected by a network abngrmality =
= Dpen Conn: Syn WScale: 8 SelAck MAS1460-Reset =
2 50 Request: bIK[37] blk[325]; bIk[37], cohn half closed—bl ; =
& m Request DIET3T] DIK[3251-bIKIG . blkIG ; i : I : — 1 -150 g
m| [Dpen Conn: Syn W3cale: 8 SelAck | : —= [qnaored T] { 3
[k} ! . A
E g ¢ Tl ot ——— S
— "I T A I []
& m of
g ! L w
= 1 Im - 1 L L 100 E
& 301 = ' =i 2
@ 1 L T I I T = E
E . [N} D_
————— £
20 4 L P
=
________ - 50 E
|_
10 4
- all
T iy T l
0 : p- el o e -h~|m l--.lp_» o#-:hn o fude W " h ! T LT) 4++*t-b-l-|-|+r-- +dj» 0
’ 01:54:20 01:54:40 01:55:00 01:55:20 01:55:40 01:56:00 01:56:20 01:56:40
MetData Chart of 18:41 12-0ct (Content_Server) Wednesday 19-Mov 73,065

Start of Test Run Four

Zoomed-in even more - to the start of test four. All the initial red requests arrive at once, but the responses
take several seconds to get worked through. New requests take their place as they complete. Each red
transaction involves many blue ones — so even though the blues are faster, their times add up to make the

reds.

All these transactions begin together. But end over many seconds.

As each finishes, another begins.

1« Transactions Overall Trans Times, Transactions in Progress & Concurrent €onnections -
| Transaction affected by a network abnormality [
m Request blIk1271-bIk3
Request bIK[37]; bIK[325]—-
g] ® Reguest DIKI3251-DIK1
+ Request blk[325]-bIk1 o
200 5
k=]
o5 | Servers e
" + ContentSvr 5
=2 + WebAppSyr L)
o I=
@ L1650 @
W 20 - 5
2 5
i (&}
& =&
@ 151 w
= 100 @
[=N —_
w N
[(=]
e o
10 4 =
w
=
L50 ©®
|_
91 - -
e e | W v — o —— R — R e T R e e
e o - e L =
0 m—— - — ux P - . e .,..:'_n.- i Fan £ rramm . SRRCIRT =l s 0
01:54:0 01:54:10 01:54:15 01:54:20 01:54:25 01:54:30 01:54:35 01:54:40 01:54:45 01:54:50
MetData Chart of 17:15 18-Oct (Content_Server) Wednesday 19-Mov 18,720
Megalodon Challenge - My Solution Philip Storey 77

