Case Study
Part-1

Sometimes We Need Packet Captures in More Than Two Locations to Fully
Understand the Underlying Cause

Or

Packet Capture Analysis Can Uncover Surprising Behaviours That Can’t Be
Found in Any Other Way.

Or

The TCP “IP ID” Field Can Provide Valuable Insight into “Upstream”
Behaviours That We Can’t Directly Observe.

Or

Why Permanent Packet Capture Appliances Speed Up Troubleshooting
Exercises.

Tracking down an application problem within a multi-vendor environment.

In this case study, an application provided by a third party vendor was often failing to initialize correctly on the
customer’s PC.

The network path between the user PC and the vendor’s application server traversed the customer’s network,
network provider WAN, a third party data centre and finally the software vendor’'s compartment where the
application was hosted.

Although packet captures were taken at the client PC as well as the server, the exact nature of the issue could
not be determined until captures were taken simultaneously at three different locations in the path.

The analysis was performed by Philip Storey, a freelance troubleshooter and application performance analyst who lives
in Sydney, Australia. Phil@NetworkDetective.com.au (LinkedIn Profile: https://au.linkedin.com/in/philipstorey3)

The software used to perform this analysis of the packet captures is a commercial product, “NetData-Pro”, developed
by Bob Brownell of Measure IT Pty Ltd in Sydney.

A free version, “NetDatalite” is also available. = Bob@NetData-Pro.com

mailto:Phil@NetworkDetective.com.au
https://au.linkedin.com/in/philipstorey3
mailto:Bob@NetData-Pro.com

Part 1 When One Capture Is Not Enough 2015

One Capture Location is Often Not Enough

1 [INITIAL ENGAGEMENT

At the beginning of this troubleshooting engagement, available facts were quite sparse.

Questions were asked in order to separate facts from opinion, hearsay, guesses or other non-factual
information. At this stage of any engagement, everything is taken with a grain of salt and is subject to
verification during the analysis stage.

1.1 PROBLEM STATEMENT

The reported problem was that an application often didn’t launch properly - the user got an error message
after 2 or 3 minutes had elapsed. It didn’t happen all the time, but often enough for complaints.
Furthermore, even when the application did launch properly, it took well over a minute to do so.

1.2 INITIAL STATEMENTS

e The customer had purchased an application from a third party supplier.
e The client component of the application ran on a user’s PC, within the customer’s office in City-A.
e The application interacted with the provider’s server which was located in City-B (different state).
e The network linking the user’s PC to the server traversed a path that had at least 4 different owners:
o The user’s own internal network.
o A network provider.
o Anoutsourced data centre network.
o The application provider’s server farm component within that data centre.
e The WAN link to the customer was only 192Kbps.
e There were no WAN accelerator devices in the path.

! Customer, City-A

Server
(Windows,
VMWare)

- Router

Case Study Philip Storey 2 of 17

Part 1 When One Capture Is Not Enough 2015

1.3 THE APPROACH

| was engaged by the network provider and did not have direct access to either the customer or application
provider (contact with the data centre operator was even more difficult). The approach was to arrange for
packet captures to be taken simultaneously at three locations, as indicated by the yellow hexagonal numbers
in the diagram below.

The network provider staff were able to arrange this, performing their own capture on their own switch and
working with the customer and application provider to install and run Wireshark on the User PC and the
Server.

As it turned out, the reason for the problematic application launch behaviour could not be properly
determined without analyzing all three of those captures. As we shall see, we were also quite lucky that third
capture was at the customer’s end of the WAN rather than the data centre end.

IM

However, the eventual “root cause” was not what anyone was expecting.

This study is therefore broken into four parts - the analysis of each individual capture followed by the final
conclusions drawn from all three captures.

1.4 WHAT WE COuLD INFER

e It was very likely that the customer has a firewall between its internal network and WAN.
e It was also very likely that there is firewall at the data centre end.

e There was probably a load balancer somewhere in the data centre, in front of the server.
e We should be prepared for other devices such as proxies to be involved.

r .
- Customer, City-A Network Provider

1
I
I
I
I
1 i v Deadars T P Y A b Server
| . RO’UIET — y -‘_F_‘QHJEEL b i i (Windows,
. Mmoo 7 H e B m [] ! ,
~ - QI VMWare
! N b2 l192Kbps | .z 1R i)
i @ S [i PSS
. . o= 1 H o= "'ﬂ-...__-ﬂ?".
| e ! [[P 1 i [=] oo
. ~dm——— 4 1 : 1 i i
i : _! B |
! | ! !
! | ! !
e e e e e e e e e = U A -

Dotted lines represent as yet “unknown” devices or factors.

Case Study Philip Storey 3of 17

Part 1 When One Capture Is Not Enough 2015

2 PART 1—THE USER PC

Wireshark was installed on the user’s PC and set to run in ring-buffer mode. This allowed a capture to be
extracted that caught test runs of the application containing examples of both a “good” launch as well as a
“bad” launch.

This initial capture analysis helps to determine some facts and enables some inferences to be made, from
past experience. However, as we shall see, we didn’t get enough evidence to conclusively identify the actual
cause of the problem.

2.1 THE ANALYSIS

Once a useful capture file was eventually made available, the analysis for the user PC took about two hours.

It had taken just under two weeks from the initial engagement for all the parties to setup the capture
mechanisms and have them running during an example of the “bad” program launch behaviour.

Thus, had permanently installed packet capture appliances already been in place, we could have significantly
reduced the time from the start of engagement to the final outcome.

Case Study Philip Storey 4 of 17

Part 1 When One Capture Is Not Enough 2015

2.1.1 High Level View

The very first chart gives a high level view of all the clients, servers and services that are represented in the
captured data.

1Client 22 Dialogues R e [

from all connections
in tiers 25/06/15 13:27:39.6574 - 13:40:16.3984 rates

Total 159.2 Kbps = 9.95 Kbps (cht) + 142.3 Kbps (svr) -
14%

10.41.202.173 (ICMP4) g
10.41 202.173:53 (DNS/UDP) g
10.41 202.173.67 (DHCPs/UDP) iy
10.41.202.173:123 (NetTimeP/U iy
10.41 202.173:135 (msRPClem Py
10.41.202.173:389 (LDAP/TCH %
10.41.202.173:389 (LDAP/UD
10.41 202.173:445 (SMB2/TCF)
10.41.202.173:3268 EmG lobCatiTCP)
10.41.202.173:49155 (msRPC/TCP)

0.41.202.174:53 (DNS/UDP)
A1.202.174:30 EH'ITP!TCF"
4120217488 (KerberossTCP)
1.202.174:385 (LDARUDP)
10).41.202.174:445 (SMB2/TCF)
10.41.202.174:326 (mGIubCa{-'TCF',-

10.41.202 122

10.41.202.190:162 (SNMPtrap/UDP)
10, 1 Py

41.202.190:1801 (meMsgllueT

Connections: 5 with 38 round-trips; minimum setup 49.5 ms [~ 10.41.218.12:3580 (TCP)
10.41.202.183: 1.34 Kbps (2.16 pps x 77.69 bytes) in 1,631 pkis

with 0 data retx, 1 dup.ack
to max window 18.159 Kbytes filed to 1.905 Kbytes M 119.239.87 87:80 (SOAPUHTTRTCR]
119.239.87.87-80: 17.80 Kbps (3.05 pps x 732.81 bytes) in 2,770 pkis

with 2 overtaken, 450 data retx; sel.ack not permitted, 437 dup.acks
to max window 64.360 Kbytes filled to 35.120 Kbytes: TCP used bandwidth 5.677 Mbps [192.168.130.43:8014 (HTTP/TCF)
Application: Simple Object Access Protocol version 1.1 on HTTP

\\' 192.168.130.44:8014 (HTTR/TCR)
P Larges? oW
NesDEE CraEn Client traffic is plotted sbove server traffic [EEEEEEEN 1243 Kbps

The above chart shows clients on the left hand side and services on the right. The thickness of the lines
reflects data volumes in each direction. The colour, in this case, highlights large packet retransmission rates.
We can see at a glance that only one server connection has problems — with a retransmission rate of 18%.

This is the web server that drives the application experiencing the problems.
The popup on the line shows more details of the client-server activity:

e There were 5 TCP connections from this client to that server.

e The server is nearly 50 ms away from the client.

e Most of the data flow is from the server to client (“download”).

e There were 460 retransmitted packets out of a total 2770.

e There were also 437 duplicate acks from the client to the server.

e The Selective Ack TCP/IP feature was not supported on these connections.

Case Study Philip Storey 5o0f 17

Part 1 When One Capture Is Not Enough 2015

Another option on this chart type is to plot all the round trip times as observed from the point of capture.
We can see that:

e Most of the servers that this client connects to are local (the IP addresses on the same subnet would
also hint at that).

e The capture was taken very close to the client (in fact, it was within the PC).

e There are a couple of other servers over 200 ms away, but with small volumes.

The “distance” of 50 ms is fairly large, so we should be on the lookout for “chatty” application behaviour.

1Clent Round-Trip (Conn-Setup) Times 22 Services
rom all connections o .
intiers from monitoring point 25/06M5 13:.27:38.6574 - 13:40:16.3984

r10.41.202173 (ICMP4)

r 10.41.202.173:53 EDNSJ’UDF'E)
c10.41.202.173:67 (DHCPs/UDP)

e 10.41.202173:123 (NetTimeF/UDP)

co10.41.202.173:135 EmSRPCJ'E!m.l'TCP}

e 10.41.202.173:389 (LDAP/UDP)

p 10.41.202.173:389 (LDAPITCR)
10.41.202.173:445 I:Sr-.ﬂEIE.l'TCF'{{T
10.41.202.173:3268 (mGlobCatTCP)
10.41.202.173:49155 (msRPCITCP)

SEDNSIUDF'

B0 (HTTRITCR)

88 (Kerberos/TCP)
2389 (LDARIUDP)

445 (SMEIEJ'TCF'{{T
3268 (MGlobCatTCR)

fa e £a) 00 DOET

4
4
10.4
L 1004
L 10.41.
1041202183 { 1041
10.4
104
L 10.41.202.190:162 (SNMPtrap/UDP
L 10.41.202.190:1801 (msMsgQuelTCP)
41.219.12:5530 (TCP)
. 110.230.87.87:80 (SOAP1HTTPITCP)

192168130 438014 (HTTRITCP)

192.168.130.44:8014 (HTTRTCP)

50 0 50 100 150 200 250 Largest flow
NetData Chart Min. RTT milliseconds 149.3 Kbps

Case Study Philip Storey 6 of 17

Part 1 When One Capture Is Not Enough 2015

2.1.2 Connections

The Connections Table shows the 5 TCP connections that were captured. The closures by TCP Resets, both from the server and the client catch
our eye here. We can use this to begin to get a view of normal vs non-normal behaviours.

The first row is the connection containing the “good” behaviour and the highlighted row is the one containing the “bad” behaviour.

Note the very high levels of server retransmissions, “ReTx”, in both connections.

ConnlD | Type Client (Caller) | cPort | Server (Call... |5P|:|rt | First Packet Closing | Closure: |T|:|ta|seu: |Trip& | Ch Pkts | ReTx | Kbps | Swvr Pkts | ReTx | Kbps
1929461 SOAPTAHTTRITCR 10.41.202.183 54439 1192398787 20 oph132750.7714 Felt1333:24.9434 clFF 3342222 20 920 1.742 1557 | 234| 27488
1529793 SOAP1AMHTTR/TCR 10.41.202183 B4771 119.233.87.87 80 opt13:30:51.5033 Rewl 333044248 zwiR 1329213 2 5 0.073 g 010z
1529831 SOAF1AHTTRITCE 10.41.202183 54863 11923838787 20 ophl3:31:55.0977 Rswrl338:33.9330 swiR 4049013 10 E3E 0878 1187 | 166| 17.200
13930639 SOAPTAHTTRITCR 10.41.202.183 B5E17 119.238.87.87 20 opn13:40:02.4595 Folt13:40:03.8653 clFFcR 1.8185 2 13 9.424 12 30,025
1530648 SOAP1AMHTTR/TCR 10.41.202183 BBE2E 119.233.87.87 80 optl13:40:07. 7858 Rcl13:40:08.1953 cltA 0.4100 2 7 11.732] 33,360
—

Case Study Philip Storey 7 of 17

Part 1 When One Capture Is Not Enough 2015

2.1.3 Transaction View

It is much more interesting and revealing to look at individual transactions.

The analysis now examines just the client/server connections that involve the problem behaviour. The table below lists all the transactions
within the 5 connections between our one client and the one server. The 3-way handshake information is in green and the pairs of the two
largest transactions in yellow. “Start R(esponse)” is the time the server took to think about the answer, “End Resp” minus “Strt Resp” tells us the
time to deliver the answer over the network.

| Trn Key | Request Strt | Resp End |T‘,rpe | Description | StriR... | End Rsp | ConniD | Client | Server | LRqstl LResp | Frame|
. 336 1327607714 132760821 TCP [Dpen Conn: Synch 'wScale: 8 Seldck M55:1460-4ck Synch MS5S5:1380 - Ack] 0.0435 00496 1929461 10.41.202183 119.239.87.87 70 B4 5282
* 341 1327608267 13:2758.704 SOAPIHTTR/TCP POST: otherservices3040/otherservices. asma/GetinformationT ype--200 E.2182 75215 1929461 10.41.202183 119.239.87.87 908 2333 5285
o E16 1323144835 13:28:21.3318 SOAPVHTTR/TCR POST: fotherwebservices00/otherservices. asmu/E cho--200 E781E E7E1E 1923461 10.41.202183 119.239.87.87 991 1200 &F00
. E28 1323:237271 13:28:24.2083 SO&P1HTTR/TCP POST: otherwebservices100/otherservices. asms/Logon--200 0.3710 04176 1929461 10.41.202183 119.239.87.87 1237 14390 8825
+ B2 1323:266128 1329331547 SO&P1HTTR/TCP(POST: fotherwebservices1 00/ otherservices. asms/GetReferenceT ables--200 0.3145 664757 1929461 10.41.202183 119.239.87.87 1232 547360 | 9273
+ B92 1323358766 13:30:11.2989 SDAPHHTTPJTEP[PDST: fotherwebservices1 00/ otherservices. asma/GetReferencesStatic nfo001 200 01395 353882 1929461 10.41.202183 119.239.87.87 1281 220?48]11?55
& 1476 1330182931 13:30:18.4889 SOAP1/HTTR/TCP POST: fotherwebservicesT00/otherservices. asms/E choPing--200 01328 01328 19294617 10.41.2027183 1192398787 933 1204 15589
] 1542 1330:420622 13:30:42 4203 SOAP1/HTTRITCP POST: fothenwebzervices100/otherservices. azms/G etCustomerl nform Azsign--200 01626 03046 1929461 1041202183 1192398787 1390 3874 15808
* 1658 13:30:49.2114 1330522721 SOAP1/HTTR/TCP POST: fotherwebservices100/otherservices. asms/GetCustomer nform1--200 0.3732 29973 1929461 10.41.202183 119.239.87.87 2232 42293 16076
. 1656 13:30:51.5033 1330:521556 TCP Open Conn: Synch 'WSeale: 8 Seldck M55:1460-4ck Synch MS5S5:1380 - Ack 06522 0.BB23 1929793 10.41.202183 119.239.87.87 70 B4 1E1E5
& 1663 133062156 1330:53.3442 SOAP1/HTTR/TCP POST: fotherwebservices100/otherservices. asms/E choPing--200 11283 11253 1929793 10.41.202183 119.239.87.87 4993 1300 16189
. 1710 133069349 1330697212 SOAPI/HTTR/TCR POST: fotherwebzervices1 00/atherzervices. asms/GetCustomer nform1 Azsign--200 01285 03085 1925461 1041.202183 1192398787 1390 3874 16297
& 1791 1331266668 1331:25.8522 S0AP1/HTTRATCR POST: Aothenwebservices100/otherservices. asmx/EchoPing--200 01225 01225 1323461 10.41.202183 1132338757 933 1204 16516
. 1794 1331:44.5585 1331:44.9209 SOAP1/HTTR/TCR POST: fotherwebzervices100/otherzervices. asms/GetCustomer nform1Azsign--200 01738 02981 1925461 10.41.202183 1192398787 1390 3874 16587
. 2116 13:31:55.0977 1331:55.1474 TCP [Dpen Conn: Synch 'wScale: 8 Seldck M55:1460-4ck Synch MS5S5:1380 - Ack] 0.0435 00497 19292591 10.41.202183 119.239.87.87 70 B4 17560
* 2118 13:31:561529 1331:85.3729 SOAP1/HTTR/TCP POST: fotherservices3040/otherservices. asma/GetlnformationT ype--200 0.0861 01553 1929891 10.41.202183 119.239.87.87 908 2339 17863
o 2257 1332103934 1332105789 SOAP1/HTTR/TCP POST: fotherwebservices100/otherservices. asms/Echo-200 01219 01219 19298591 10.41.202183 119.239.87.87 991 1200 17827
A 2260 1332129836 1332131342 S0AP1HTTRATCR POST: Aothenwebservices100/otherservices. asmx/Logon--200 01011 01477 1923831 10.41.202183 119.233.87.87 1237 1430 17345
+ 2853 1332155397 1336205544 SOAP1/HTTR/TCP [POST: fotherwebservices]00/otherservices. asms/GetR eferenceT ables--200 0.3070 2449513 19298591 10.41.202183 119.239.87.87 1232 547360 17861
u 2584 1336:25 4066 1337:51.3868 SOAP1/HTTR/TCP [PDST: fothenwebservices1 00/otherservices. asmx/G etR eferencesStaticlnfol0] - 200; incomp; term by server Reset 01055 8559112 1929851 10.41.202183 1192398787 12681 54500]20928
. 2639 13:40:024595 1340025102 TCP Open Conn: Synch™Wwieale: 2 Selick M55 T4E0-Ack Synch WSS 7380 - Ack 00807 OOR08 T950E55 1047202783 11925398787 70 B4 21806
ul 2640 13:40:025106 13:40:03.1997 SOAP1/HTTR/TCP GET: fotherservices3040/otherservices. asma--200 0.6445 06891 1930639 10.41.202183 119.239.87.87 463 1591 21809
& 2641 13:40:03.2927 1340:04.2776 S0APT/HTTRATCR GET: Aaviconico-404r incomp; termn by client 0.0/ 09843 1330633 10.41.202183 119.233.87.87 367 1878 21819
. 2642 13:40:07.7858 13400783583 TCP Open Conn: Synch 'WSeale: 2 Seldck M55:1460-4ck Synch MS5S5:1380 - Ack 0.0500 00801 1930648 10.41.202183 119.239.87.87 70 B4 21847
ul 2643 13:40:07.8363 1340:08.0558 SOAP1/HTTR/TCP GET: fotherservices3040/otherservices. asma--200 01430 02195 1930648 10.41.202183 119.239.87.87 EB51 2283 21880
. 2644 1340080776 13:40:08.1954 SOAP1/HTTR/TCP GET: Aaviconico-404 0.0706 01178 1930648 10.41.202183 119.239.87.87 331 14058 21856

In the TCP/IP 3-way handshakes, note that the client PC offers an MSS of 1460, support for Selective Acks and a Window Scale of 8 — all of which
is normal for a modern Windows PC. However, the “server” responds with an MSS of just 1380, no Selective Ack and no Window Scaling.

In the “good” example, there was a large “GetReferenceTables” POST transaction that involved downloading close to 550KB of data (LResp
column) in 66 seconds (End Resp column). This was followed immediately by a “GetReferencesStaticinfo” POST transaction that retrieved 220KB
taking 35 seconds.

In the “bad” example, the same 550KB transaction took 245 seconds to complete. The second transaction didn’t complete properly, being
terminated by a server Reset after downloading only 94KB.

Case Study Philip Storey 8 of 17

Part 1 When One Capture Is Not Enough 2015

The below graphical view of those same transactions visually shows us that the “good” pair executed much more quickly than the “bad” pair
(but we may not call over 90 seconds particularly “good”). Further, that almost all the transaction time was consumed by network delivery

rather than server “thinking”.

Note that the x-axis here is time-of-day and the y-axis is time taken per transaction. The horizontal lines indicate the overall start and end of the
transaction. Thus, the lines get wider on the x-axis as they are plotted higher up on the y-axis.

The key piece of information is that the “bad” example involved a transaction being terminated by a server Reset. The popup shows us the
detailed time breakup between client request (single packet of 1261 bytes taking 68ms) server “thinking” time (105ms) and server response
delivery (94KB in 85.8 secs).

119.239.87.87 Overall Trans Times & Concurrent Connections

2580 - Ry r a0
- ' Connection Closures
i semver Reset close (2) 45
Transactions
Transaction affected by a network abnormality
2004 4 POST: lotherwebsemnices100/othersenvices. asmfoetReferenceTables—EDD F40
m POST: lotherwebsemnices100/othersemnvices. asmuGetReferencesStaticinfo001-200= incomp; term by server Reset
+ POST: lotherwebsenvices100/othersenvices. asmw/GetReference s Staticinfo001-200
. ¥ POST: lothersenices3040/othersenvices asmwGetlnformationType—200 > 25
- Key: 2584 from 13:36:25.4066 to 13.37.51.3858
s Trans: SOAP1/HTTPRATCP POST:
2 150 \ fotherwmebservices100/otherservices_asmx/GetH eferencesStaticinfol01
w -- 200> incomp; term by zerver Reset
w Connection 1929894, 60.57.29.95 -» 119.239.87.87. 80
E Elient: 10.41.202\ 33 43522 zecs
H Request 1261 bytes 0.0630 secs
@ Server._ 119.239.87.87\ 0.1055 secs
=3 1004 Responseng4.500 Kbytes 85.8057 secs _
& . 3
~ / F15
50 1 F10
L5
,—lﬁ_‘
0 H = . . xey —e ; i - 0
1327 1328 13:29 13:30 1331 13:32 13:33 1334 13:35 1336 1337 13:38 13:349 13:40 13:41
MetData Chart Thursday 25/06/15 26

Case Study Philip Storey 9 of 17

Part 1 When One Capture Is Not Enough 2015

Below is an alternative “waterfall” view (or Gantt style) of the same transactions, providing a different visualization. Some of the smaller POST
transactions consumed mostly server time (yellow) whereas most of the larger POSTs were consumed by network delivery from the server
(blue). The client reaction time (grey) is the time between the various transactions. Mostly this will represent the user reading the results of
previous responses or thinking about what to do next.

Copyright Measure T

Time Summary and Transaction List

E,' 1 D.% EDI% 3 E'.% 4q% 5 D.% EU.% ?':'.% a8 D.% g D.% 1 Up%
Client reaction time S5 i
Data Bytes r T T T T
Request Resp 0 Secqnds 12|D 18|D 24,0 SEIID 3@0 4%0 48|D EAILU Equ E@U T-"EIU ?‘BID BAILU Server. port Protocol ConnlD
q0a 2338 |_| POST: lothersenices3040/othersenvices asmuGetinformationType—200 119239 87 87: 80 S0AP1 1929461
991 1,200 |:| POST: lotherwebsenvices100/othersenvices asmxEcho—200 client delay / block 38.1% ooz 1929471
1237 1,490 | POST: iotherwebsenvices100/athersenices asmiLogon-200 o ey 00 & 1929451
1,232 BATK B POST:jotherwehsenices 100/othersenvices asmx/GetReference Tables—200 L service oop-delay 0.1% 21 1929461
1,261 221K [POST: Iotherwebsenices100/otherservices asmu/GetReferencesStaticinfod01-200 | Sonnectrequest 5.0% - 4 1929461
999/ 1,204 | POST: lotherwebsenvices 100/othersenvices. asmwEchoPing—200 B respnse msg time 55.3% 1929461
1,380 3 874|POST: IothenﬁebsewicemI:Ibs’uthersewices.asmn‘GetCustomerlnfnrrm.-"-'\ssign—EDD 119.239.87.87. 80 3S0AP1 1929461
2,232 42299 POST: fotherwebsenices100/othersemvices. asmu'GetCustomerinform1-200 11923987 87 80 SO0APA 1929461
999 1300 POST. lotherwebsenvices 100/othersenvices asmwEchoPing—-200 11923987 87 80 S0AP1 1929793
1,380 3 874|POST: IothenﬁebsewicemElElsﬂ]thersewice5.asmm‘GetCustomerlnfnrm1.&55ign—20[l 119239 87 87. 80 S0AP1 1929461
999 1204 | POST: lotherwebsenvices100/otherservices asmyEchoPFing—200 119239 87 87. 80 S0AP1 1929461
1,380 3 874|POST: IothenﬁebsewicemElElmtherskwice5.asmm‘GetCustomerlnfnrm1.&55ign—20[l 119239 87 87. 80 S0AP1 1929461
a08 2 339(POST: Iotherseru'icesSEId-Elmthersewitles.a5mXJ'GetInfUrmatiUnT}rpe—EUD 119.239.87.87: 80 S0OAPA 1929891
991 1,200 | POST: fotherwebsenvices100/othersemnvices asmwEcho—200 119.239.87.87: 80 S0OAP1 1929391
1,237 1,490 | POST: lotherwebsenices 100/othersemrvices asmwlLogon—-200 119.239.87.87: 80 S0OAPA 1929891
1,232 B47K|POST: fotherwebsenices100/othersenviges asmylGeiReferencelabless> 00 119.239.87.87: 80 S0OAP1 1929391
1,261 94,900|POST: .../GetReferences Staticinfo001-200= incomp; term by server [119.230.87.87: 80 SOAP1 1929391
463/ 1,591 GET: lotherservices3040/otherservices. asmy—-200 119.239.87.87. 80 SO0APA 1930639
367 1,878|GET. favicon.ico—404= incomp; term by client 119.239.87.87. 80 3S0AP1 1930639
651 2 283|GET: lotherservices3040/otherservices. asmy—200 11923987 .87 80 SOAPA 1930648
381 1,405|GET. favicon.ico—404 119.239.87.87. 80 S0OAPH 1930648
22519/ 1,485 328 1330 1332 1334 1336 1338 1340
MetDats Chart Thursday 25/06/M15 71 transactions on 5 connections in 737 4240 secs

2.1.4 Focus on the Failed Transaction

By plotting a Packet Timing chart of that last “bad” POST transaction we get a view of the way packets flowed between the client and server. The
popup is just to confirm that this is the same transaction as in the previous charts.

This chart can be thought of as a horizontal “bounce” or “ladder” diagram, but is far richer in the information it conveys.

Case Study Philip Storey 10 of 17

Part 1 When One Capture Is Not Enough 2015

The packets are displayed at their actual time-of-day (x-axis), providing many visual cues. The y-axis contains 3 rows, with packets from the client
PC all being in row 1, packets from the server are in row 3 (and row 2 is just a blank separator). Shapes and colours are used to differentiate
packet types (see legend). Black squares are normal data packets and we can see some purple squares showing packets that were retransmitted.
Variations of blue diamonds represent different types of Acks.

The vertical position of the packets indicates their payload size. The two popups on some server packets show that 1380 is the largest size here
(consistent with the 3-way handshake) but there are also many packets with a payload of just 80 bytes.

Reading the timescale on the top of the chart, the client’s request was at 5 secs and the server’s Reset comes 135 seconds later. We also see
clusters of server packets with gaps of 5, 10, 20 & 40 seconds (with 50 seconds to the Reset).

Ciopyright Measure |T

T Server packets appear in a socket 2 units above client packets on y-scale.
PaCket Tlmlng A packel:'t"s heightp'.?t thin a socket band is proportional tDpi‘tS length. ¥
Seconds
0 10 20 30 40 50 60 70 a0 a0 100 110 120 130 140 150

Packet seq 21373 data

IP 1D 39631

Protocol: SOAP1HTTRTCP
Time: 13.37.51.3858

Length: 1438 bytes (data 1380)

::I;ﬂgfﬁ == 5;5312: data Packet seq 21505: Reset 4 non-data

PID: 60549 Duplicate Ack
B Protocol. SOAP1HTTRITCP
£, rme " 3a7nt 2308 Protocol SOAP1HTTRTCP < app header only
Ugj Length: 138 bytes (data 30} Time: 13:38:39.9950 z Rezet

Length: 64 bytes | data retransmitted
L. server time

Bl respnse msg time

2584 from 13:36:25.4066 to 13:37.51.3858

SOAP1/HTTP/TCP POST:
fotherwebservices100/otherservices. asmx/G etAeferencesStaticinfo001
-- 2003 incomp; term by server Aeset

10.41.202.183 48522 zsece
1 s 1261 bytes 0.0630 secs

. 119.239.87.87 01055 secs

Response: 94.900 Kbytes 85.8057 secs

13:36:20 37 13:38:00 13:38:20 13:38:40
MetData Chart Thursday 25/06M15 247 packets

Case Study Philip Storey 11 of 17

Part 1 When One Capture Is Not Enough

2015

The “Data Sequence” chart below - for the same packets as above - provides even more visualization of the flow.

The y-axis now counts the bytes within the overall flow as each packet arrives. Each black vertical packet marker shows the packet’s size as well
as its relationship to other packets within the data flow. Any packets that were lost upstream would cause vertical gaps here (there are none).
The blue line underneath the packets represents the client’s acknowledgements. It therefore trails the packets upwards as Acks are observed.
Since we are capturing inside the client PC, the PC’s Acks are almost instantaneous, so the blue line hugs the packets tightly. The pink line
represents the client’s Receive Window, with the scale on the right hand side. We can see at a glance that there are no window closures.

The three most eye-catching features in this case are:
e The apparently vertical stack of server packets (meaning that they all arrived at virtually the same time).
e The diagonal purple flow (packets that were unnecessary retransmissions or earlier black ones).
e The occurrence of time gaps with increasing durations (which from here appear to be all due to the server).

Server Data Sequence, Window Size & Throughput vs Time

SOAPAUHTTRTCP connection 1928891: 10 41 202 183 {clt) -= 119.239 87 87 (swr)
100 - > 3 7 70 rG0
g Packet zeq 21505: Reset |
90 j IP ID: 60549 '
Protocol: SOAPVUHTTRTCP 60 !
Time: 13:38:39.9990 50
80 Length: 64 bytes
70 - ‘E F50
] 3 o 40
2 = 3 s,
= 60 A e | = o
=1 = =1
= :1' Packet zeg 21107: data retransmitted r40 & §
= 3 IP 1D 7871 @ o
a 707 J " |Protocol SOAPIHTTRACP ST e 30 &
2 E i |Time: 13:36:31.8323 _2 segments in window | = Jul
E 40l 23T {Length: 1438 bytes (data 1380) 3 normal data packet E 5
= ! “1data retransmitted = &
o . ack packet =
| —— window lower edge 20
304 : count of duplicate acks Log
| —— client receive window
i 12 maximum-size segments
20 4 [=erver transmit window
"\ — - =erver Kbps L10
1 F10
10 4 i I .
3 : ~ .
~ 1 . . —
S N e e . S . . o Lo
13:36:20 13:36:40 13:37.00 133720 13:37:40 13:38:00 13:38:20 13:38:40
MetData Chart Thursday 25/06M15
Case Study Philip Storey 12 of 17

Part 1

When One Capture Is Not Enough

2015

We now need to zoom in to the interesting behaviour between times 13:36:25 and 13:36:34.

Here we can see the original flow of packets (usually 1360 + 80) in an “escalator” formation at a throughput (pink dashed line with RHS scale) of
around 175 Kbps. This is consistent with the known WAN speed of 192 Kbps. The slope angle of the “escalator” therefore represents the rate of
packet arrivals across the WAN.

The time

gap, followed by a vertica

IM

the same end of the WAN as the client) that is holding packets and then, for some reason, releasing them all at once.

elevator” formation, visually tells us that there must be a network device within the local network (i.e., at

I've added an orange “trend line” to show us that the top of the “elevator” is roughly at the same position as the “escalator” would have been if

there was no buffering. So, overall, not much time has actually been wasted and this behaviour on its own is not a problem.

Server Data Sequence, Window Size & Throughput vs Time

SOAPAMHTTRMCP connection 1929891: 10.41.202.183 (clt) -= 119.239.87 .87 (swr)

80 -] -7 r300
L .;,—lﬂ |
r' _Fll T3 e ==] X
704 : 1 60 |
Packet seq 21072: data T L Lasn
IP ID: 5052 71 I
604 Packet seq 21007: data Protocol: SOAPAMHTTRTCP = 1
IP D 6590 Time: 13:36:28.5016 1 Ls0
Protocol: SOAP1THTTRTCP fl Length: 1438 bytes (data 1380) 9 H
" Time: 13:36:27 1234 ; ' a w [200
o 5 o ' @
£ 50 Round-trip: 0.0 ms \ ! i 3 = a
Q Length: 138 bytes (data 80)/] ; . _|—| L40 @ =
m -) Y 'Qj ' | 1 F\‘i o x
T 40 ! . ! Packet zeg 21084: data retransmitted N L1450 %
% ' Packet seq 21012: data IP 10 7826 w o
2z | AP I 6OT2 Protocol: SOAPI/HTTRITCP F30 E =
= / Protocol SOAPUHTTRTCP |Time: 13:36:30.2010 = =
= 304 : Time: 1336 28 4000 Length: 1438 bytes (data 1380) =
. > F100
I Length: L 1438 bytes (data 1380) [—— Client window upper
! } 12 segments in window 20
20 4 I 1 normal data packet !
' l 71 data retransmitted L
! I N ack packet
\ ! 1 —— window lower edge K F&0
10 ! I count of duplicate acks i - 10
1 - . —— client receive w indu:l\';' .
— =, 12 maximum-size segments .
) 3 N IJ ! [server transmit window - -
0 ; L AL,) , — - server Kbps 1o ~ 0
13:36:25 133626 133627 13:36:28 13:36:29 13:36:30 13:36:31 13:36:32 13:36:33 13:36:34
MetData Chart Thursday 25/06/15
Case Study Philip Storey 13 of 17

Part 1 When One Capture Is Not Enough 2015

The purple retransmitted packets are of more interest, because they are completely unnecessary. Why would
the server retransmit packets that our client has already acknowledged (note the more clear view of the blue
Ack line on this chart)? Note also that the purple retransmissions arrive at more like the usual WAN rate.

The most interesting question is why there is a very long time gap before we see the next new (black) packets
from the server. This first gap is 13:36:33 — 13:36:285 = 4.5 seconds. We know from the earlier Data Sequence
chart that these gaps keep increasing in duration to 5, 10, 20 & 40 seconds. Such a time doubling like that is
usually related to a TCP/IP retransmission timeout.

While we have this chart, we can use the popups to discover more details (I hovered on each packet in turn to
see the underlying data, but I've only left a few on display so as not to clutter the chart):

e The IP IDs of the packets in the “escalator” are sequential, with 6590 at the top.

e The first packet at the bottom of the “elevator” has IP ID 6972.

e The second packet in the “elevator” has IP ID 6626.

e The second “escalator” flow at time 13:36:33 seems to be a continuation of the purple flow.

e The packet payload sizes seem to always be in groups of two — adding up to 1460 (mostly 1380 + 80 but
sometimes others such as 873 + 587).

The official RFC definition for IP ID is related to packet fragmentation — and it is populated differently by
different operating systems and TCP stack implementations. However, with Microsoft Windows, the IP ID acts as
a sequential numbering of packets as they leave a sender (across all connections). They can often provide very
useful information in cases like this because we can deduce retransmissions that came from the real, original
sender rather than an intermediate device. A retransmission will have larger IP ID because it was transmitted
later (subject to wrapping after 65535 — since the IP ID is 16 bits long).

We can make some solid inferences from all the above:

e The next packet in the “escalator” sequence should have been IP ID 6591. So the original 6591 must
have been lost somewhere before it arrived at the local “buffering device”.

e Subsequent packets did arrive but were buffered (IP ID 6962 left the server before 6972).

e The “buffering device” must have reported the packet loss to the “real” server, which eventually
retransmitted IP ID 6591’s payload data in IP ID 6972.

e Once that gap in the flow was filled at the “buffering device”, it then released all the buffered packets at
once.

e Alarge sequence of data (most of the 30KB “elevator”) was retransmitted from the “real” server. A large
portion of the 4.5 second gap is likely due to that, but there is still at least 1.5 seconds unaccounted for.

Unfortunately, there is no explanation here for the increasing larger time gaps (5, 10, 20 & 40 secs) in the flow.

There is also no definite explanation for the server’s Reset. We might guess that it is time-related but there is no
hard evidence for this.

Case Study Philip Storey 14 of 17

Part 1 When One Capture Is Not Enough 2015

2.1.5 Application Layer

Examining the HTTP header information for the various POST transactions, we can see that there is no
compression and no caching. Given the quite low speed of this WAN link, the application launch time would be
much improved if compression and caching were both enabled.

Here are the Request and Response HTTP Headers from the 550 KB transactions.

Request Signature: /otherwebservicesl100/otherservices.asmx/GetReferenceTables
Length: 1,232 bytes
Frame: 9278
Header:
POST /otherwebservicesl00/otherservices.asmx HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
MS Web Services Client Protocol 2.0.50727.5472)
Content-Type: text/xml; charset=utf-8
SOAPAction: "http://www.serverco.com/webservices/GetReferenceTables"
Host: 119.239.87.87
Content-Length: 906
Expect: 100-continue
Response Signature: 200
Length: 547,360 bytes
Frame: 11257
Header:
HTTP/1.1 200 OK
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Server: Microsoft-IIS/7.5
X-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Thu, 25 Jun 2015 03:28:25 GMT
Content-Length: 547127

2.2 WHAT HAVE WE DISCOVERED?

Although we don’t yet have enough facts to fully identify the underlying root cause of the stated problem, we
have uncovered quite of lot of useful details.

We have a good idea of where we need to look next —and also have some probing questions to ask the relevant
parties.

2.2.1 Facts and Hard Inferences

A program launch involves over 800 KB of downloaded data, with two large transactions consuming the bulk of
that data volume. Therefore, on the 192 Kbps WAN link, the best-case timing for a successful launch cannot be
under 35 seconds (assuming one user with no other WAN traffic at the same time).

There is no compression of the downloaded data (and no caching).

There is a “buffering device” somewhere at the customer’s end of the WAN.

Case Study Philip Storey 15 of 17

Part 1 When One Capture Is Not Enough 2015

There are packet losses somewhere in the network path (but not “seen” by the client PC).
Packets are arriving in “pairs” with payloads that add up to 1460 bytes.

The PC supports an MSS of 1460, Selective Ack and Window Scaling, but the server (or other device in the path)
specifies an MSS of 1380 with no Selective ACK and no Window Scaling.

2.2.2 Other Inferences

We can also make some “softer” inferences that will give us some more questions to ask the various parties or
alert us to behaviours to look out for in the other captures:

e Itis likely that the “real” server output packets have a payload of 1460 and there is another device in the
path (we can’t tell where) that is breaking them up into 2 pieces. If so, the SYN-ACKs in our observed 3-
way handshakes must therefore not come from the “real” server. From past experience, F5 load
balancers exhibit this sort of behaviour.

e From past experience, the MSS value 1380 along with the disabling of the Selective Ack function
provides a hint that at least one of the firewalls may be a Cisco ASA. The Cisco “Initial Sequence Number
(ISN) Randomization” feature disables Selective Ack by default.

e The increasing larger time gaps (5, 10, 20 & 40 secs) in the flow are consistent with a transmitter’s
Retransmission Timeout mechanism. We know from the IP IDs that there are upstream packet losses
and retransmissions, so we need to find them in the other captures.

2.2.3 Updated Diagram

We were able to verify that the customer did have a firewall and it was a Cisco ASA. They also told us that there
was no proxy server of any kind (that would act like the “buffering device” we discovered). For now, we will
assume that the ASA firewall is doing the buffering (but need to seek further confirmation) until the other
captures tell us otherwise.

! Customer, City-A

Router Server
| L d (Windows,
H VMWare
-~ 1192Kbps X _s = S~ Tmmmae- are)
1460; SA Sl 1

We now have more solid lines than before.

Case Study Philip Storey 16 of 17

Part 1 When One Capture Is Not Enough 2015

2.2.4 Recommendations

Now that we have observed the various POST components involved in the launch of the program, we can
already make some useful recommendations to the application provider.

We observed that there were two large “downloads” of 550 KB and 220 KB, which were XML files containing
initialisation data. On the low speed WAN link here, these could never take less than around 35 seconds in the
absolutely best case. Furthermore, the content looked fairly static in that it perhaps didn’t often change.

We can make two recommendations:

e [f the client and server components were both made to support compression, the normally long initial
load time could be reduced by a factor of at least 4, reducing the initial load time from 35 seconds to 10
seconds or less.

o If the application was modified to include some client-side caching, then average load times could be
reduced even further.

3 WHAT NEXT?

So far, we haven’t found the true underlying cause. We need to examine the other captures from the other
locations.

! Customer, City-A

Network Provider

Server
(Windows,
VMWare)

1
1
1
1
1
1
1
i
I 1460; SA
1
1
1
1
[}

In the follow-on parts of this overall case study, we’ll examine:

e Part 2: The capture taken within the server.

e Part 3: The capture taken at the network provider’s switch, just inside the customer’s premises (i.e., at
the customer’s end of the WAN link).

e Part 4: Putting it all together. Finding the real cause(s) and trigger events. Making recommendations.

Case Study Philip Storey 17 of 17

