Predicting Application Performance Before Moving to the Cloud

Moving servers and applications from an existing data centre into the cloud (or a new data centre) is a project that comes
with a long list of risks and unknowns.

How applications will perform — from a user’s perspective — is always an unknown when systems are moved to an alternative
data centre.

This presentation discusses a process and technique that measures the exact behaviour of applications.

Early analysis of the exact behaviour of applications can remove the “performance risk” and can reveal:
* Which applications/servers can be moved with no (or little) expected performance impact?
* Which applications/servers will have an expected performance impact — and how much?
. Exactly why are applications predicted to have a large performance impact?
* Workable remediation options that can be proposed and implemented.

. Remediation options that can be implemented and tested well in advance of the physical server moves.

A similar traffic analysis can be used to determine which servers should be moved as groups.

What Affects Application Performance

Network propagation delay is one of the main and often overlooked variables that can have a large performance impact. If
new servers are further away from users, then the minimum network round trip time (RTT) to each server is increased. This
will affect individual application transactions as well as “user functions” that involve many transactions, possibly to many
servers.

Efficient applications (with a minimal number of transactions to back-end servers) can probably be moved with little
performance impact.

However, inefficient “chatty” applications (that perform many transactions) can be severely impacted when the minimum
per-server RTT is increased and each transaction time is correspondingly increased.

It is very common for application teams to not fully appreciate how their applications actually work “under the covers” and at
the network level.

Discussed here is a mechanism that was used to evaluate key applications and user functions to:
. Predict the user impact of proposed server moves.
. Understand exactly why there would be an impact.
* Confidently provide remediation options for applications.

. Provide a general assessment of application efficiency.

This presentation can be downloaded (as a PDF) from:
http://www.networkdetective.com.au/downloads

Application Performance © Phil Storey 2

http://www.networkdetective.com.au/PDFs/TCP-Performance.pdf

Terminology

Server Transaction

User Function

A single paired request and response message from a user’s workstation (the client) to a server. Is at
least one round trip (loop) - but may also involve multiple loops for network delivery of the request
and response.

All the activity between a user clicking on a button (or similar event) and the eventual rendering of
a new display on the user’s screen. It may involve a large number of server transactions, to a variety
of different servers. Several server transactions may run concurrently.

Example “User Functions” for different industries:

Launch “Teller” application. * Launch “Check-In" app. Launch “Teller” application. * Create new property for sale.
* Logon to application. e Check-in one passenger. * Logon to application. * Create new tenant record.
* List all accounts. * Check-in multiple passengers. ¢ List all accounts. * Add new tenant to property.
* Perform a cash withdrawal. * Add a bag to booking. * Perform a cash withdrawal. * Process a rental payment.
* Perform a cheque deposit. * List upgrade prices. * Perform a cheque deposit. * Print payment receipt.
* Transfer between accounts. * List alternate flights. * Transfer between accounts. * List available properties.
* Foreign currency transaction * Print list of passengers. * Foreign currency transaction. ¢ Print monthly statement.

Application Performance

© Phil Storey

Timing of Server Transactions

There are four major components that make up the timing of individual server transactions:

Client time Time spent internally to prepare the next server request Grey
Request message Time between the first and last packets of the request. Green
transfer time (Zero for single packet requests.)
Server time Time the server takes to process the request and prepare the response. Yellow
Measured as time of last request packet to first server response packet.
Includes one RTT when captures are taken at the user end. Orange
Response message Time between the first and last packets of the response. Blue
transfer time (Zero for single packet responses.)
Note:

Application overheads, such as user authentication, are treated as server transactions within the overall user function.

Likewise, overheads such as TCP 3-way handshakes and SSL handshakes are also included as “transactions” within the user
functions (since they also add loop delays that can be “felt” by the user).

Application Performance © Phil Storey

Method Used to Measure Applications

Experienced users were chosen to demonstrate various user functions for each application.

Users were asked to start significant user transactions at given times so that each function’s start time and approximate duration
could be noted. For example, “press enter when the time is at 00 or 30 seconds”. This helps to visually separate network traffic
related to each user function.

Network traffic conveying user functions was captured, either on or close to the user’s workstation, using Wireshark. Australian
software, “NetData Pro,” was then used to identify all the server transactions involved in the user functions and measure the
four major components of response times.

NetData calculates the minimum round trip time (designated as “loop delay”) to each server — as well as the number of
transactions and other TCP loops involved for each server. Each user function can usually be characterised and documented
with a single chart. The charts also display the various transaction types, showing any network or application inefficiencies that
can form the basis for proposed remediation ahead of the server moves.

When there are concurrent TCP connections to one or more servers, NetData chooses a “critical path” through the transactions
to count total loop delay (so that round trips that occur in parallel are not double counted).

The expected change of overall timing of the user function is then calculated by informing NetData of the proposed new RTT for
each server. Each server can have a different “new RTT”. The calculated overall performance impact is displayed in red.

Example Outputs from the Analysis

The following slides show some example “user function” summary charts from a real-life project.

Benefits of these charts:

Show the expected performance impact to each user function.
Show the exact reasons for the performance impact.
Explaining it all to an application team is made easier and clearer by presenting charts rather than just text.

The application team may learn things about their application behaviour that they hadn’t previously known.

How to Interpret the Charts

We’'ll begin with a relatively simple chart — which shows the 23 Oracle database transactions that were invoked for a particular end-
user task that took about a quarter of a second to complete. In this case, there is only one SQL transaction per row.

Colours are used to differentiate client/server processing times, total network RTT and network time to deliver packet data.

In this case, the original 254 ms function will become 454 ms due to the added 200 ms of loop delay.

Time that will
Colour coded breakdown be added if
Copyright Meagure T £ Il ti - . . —
of overall times. Time Summary and Transaction List| server movea. N
0 10% 20% \q% 40% 50% 60% 70% 80% 90% 100% \ Msg Tromee 00002 0.ja| | Currentfunction
“ateganes: L 1 L L L L L L 1 : : timing.
basic modal N\ _ 24 Loops __ 01593 52.9%/
- L Total | | Total ~ 025421000%([Timing change due
" processing time otal loop-delay to server (ex conn requests) Alt LoopDelay _+0.2002 78.7% |~
setaizs L Loop-delay to server for senice Alt. Total — 0.4544 178.7% to extra loop delay.
Elapsed time. Requesl Resp g Seconds 0.04 006 008 01 012 014 016 018 02 022 024 026 028 Server: port Protocol conniD \ | Overall timing after
238 1 COMMECT Request \requester version 313\ lowestversion 3000 global senvice opths \ session DU size 21521 S0Lnet 3514413 server moves.
238 9| COMMEC iﬂequest: \requester version 313\ lowestversion 3000 global service optns \session DU size 21521 S50Lnet 3514413
) 23?) :Ilggl- 0201h 02808 Systermnf: —SystemG i2:1521 Sdlnet 3514413
, . 1= 21521 S0Lnet 3514413
Request /Response [“jq, 99| LogOn2: —08h Control] client reaction 7.5% loops 211521 SQLnet 3514413
byte count for all 179 31|LogOn1: —04h'Resp (00000) [] [cltsvcloop-delay 0.2% 211521 S0Lnet 3514413 Server name/IP,
transactions in row. 18 15| GetVersion: ~Version [service loop-delay B0.1% 23 i2:1521 SQlnet 3514413 port, application
15 2| Open: -08h Control [] connectreq/ping 2.6% 1 [21521 Sdlnet]_35.1.4-44—3——— t’ |
309 32| 0327h: —04h Resp (00000) [servertime 20.6% 21521 SOLnet 3514413 protocol.
15 5| Close: —-09h OK 21521 S0QLlnet 3514413
13 5 030Ch; —-09h QK - 21521 S0Llnet 3514413
15 2| Open: -08h Control Categorisation of 211521 SQlnet 3514413 [,
185 32| 034Ah: select 3 columns from veversion where banner like i—flem Resp (00000) loop” types. 211521 SQLnet 3514413 onnection 1.
83 140| Exec: —0602h Data 21521 SQlnet 3514413 | Wecantellif
Transaction 15 3| Close: —-03h OK 1] i2:1521 SQlLnet 3514412 _ | multiple conns are
d o 15 8| Open: =08h Control _ _ 21521 S0bLnet 3514413 used.
escriptions. | aEE———28-A34a8 SEL ECT 2 columns FROM STATEMEMTS where userid=" Union Al SELECT 3 columns i2:15821 S0Lnet 3514413
27 101| DescFlds: —Fields 21521 S0QLlnet 3514413
258 35 034Ah SELECT 3 columns FROM STATEMENTS where userid=* Union All SELECT 3 columns 21521 S0Llnet 3514413
27 101| DescFlds: —Fields 21521 S0QLnet 3514413
19 33| Exec: —04h Resp (00000) 21521 SQlnet 3514413
283 95| Fetch: —0602h Data 21521 S0QLnet 3514413
Horizontal axis 15 5| Close: -08h OK : . 211521 SQLnet 3514413
is time-of-day. 16:01:01.26 16:01:01.32 16:01:01.38 16:01:01.44 16:01:01.5 Transaction count is
NetData Chart Thursday [23 tran=zactions in 1.2542 secs]— always here.

Application Performance © Phil Storey 7

An Oracle Application

the large data transfers.

In this example, there is still only one TCP connection to a single Oracle database server. There are 32 transactions that took 178 ms
to complete. In this case, each row contains multiple SQL transactions of a particular type.

The extra loop-delay would add 746 ms to the 178 ms function — to become 924 ms. Perhaps not noticeable to a human?
Could the time be reduced by combining the 27 SQL requests into one? We also need to ensure the new environment can cater for

Colour coded breakup of various times. There’s a lot
of network time (blue) due to the large responses.

Copyright Measure IT

ime Summary and Transaction List

seconds

Client 0.0466 26.2%
i)
Elapsed time. e 0 10% 20% 30% 40% 50% 66% _ 70% 80% 90% 100% Msg Traneter 00820 3a5%| | Thisisalways the
basic model Total message-transfer time ex loops _ 50 Loops _ 0.0040 22% most critical table
o = - . . . : & 0 TOtal 01782 1000% / to examine_
ee2d Client reaction time Service processing |L Senvice response-message time ex loops Alt LoopDelay _+0.7460 418.5%
— R":‘;‘“ max. 0.0050 secs L Alt Total — 0.9242 x5.2
q bytes P 0 Secqnds 0.94 0,96 0.98 0.‘1 0.]2 0._14 0.:|6 0._18 0..2 Server: port Protocol ConnlD
109 246 SELECT: select * from attachment where att_sn = *; Close--1017h Format Control (00000) iOracle:1521 SQLnet 2985397
[] client reaction 26.2% loops Only one TCP
51 194 FetchQ: --0602h Data (*****) = citsvcloop-delay 0.2% iOracle:1521 SQLnet 2985397 connection.
[cltloop-d in msg 0.1%
7 il S0 % senlnce I%o_p-delay 8;22 3%
similar ; svrloop-d in msg : ! :
transactions totalled 3 KB 231 258 2 x 0360h: --08h 1 severtime 25 1% P, T iOracle:1521 SQLnet 2985397
] respnse msg time 46.5% g
of request data and 891 “loop” types
KB of response data. 117 129 0360h: --08h iOracle:1521 SQLnet 2985397
T
3.210 891K)|27 x 0360h: ~0EFEh att iOracle:1521 SQLnet 2985397
IS TARINTIETRINNES A1) |SRISHS(SISRARISISISISRNS : - J
15:40:01.4 15:40:01.44 15:40:01.48 15:40:01.52 15:40:01.56 Transaction count is
NetData Chart Tuesday [32 transactions (S unique) in 0.1782 secs]- always here.
Application Performance © Phil Storey 8

Inefficient Oracle Application

In this example, there is still only one TCP connection to a single Oracle database server. However, there are 21,948 transactions that
took 33 seconds to complete. Retrieving thousands of rows of data either one or eleven at a time is “expensive” in both client and
server processing - but extremely expensive in network round trip times. This current 33 second task would become 6 minutes.

Simple application coding changes (or driver settings) could easily eliminate 21,939 round trips and use the network more efficiently.

Copyright Measure IT . . . cecond
Time Summary and Transaction List e
Service 10.4743 31.8%
Ciligiitai 0 1Q% ZQ% 30‘% 4Q‘Vo SQ% 60_% 7Q% 80_% SQ% 109% Msg Transfer 0.0000 0.0°/:
cave o E——. 210+5 Loops 88304 26 8%
3755 2 e ; —— s otal 2 100. -
broad Client reaction time Senvice processing time |Loops’ Total loops Alt LoopDelay 320.3896 x 97 This is much
T R":‘;““’ max. 0.0178 secs Loops Senice loops Alt. Total 353.3718 x10.7 more serious!
e ytes © OSecondsd 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Sewver pot Protocol ConnlD
4)
20,782 rows of data 33 1536| | Describe: GREPDATAFILE--Description 11521 SQLn312V | 3122236
(2.6 MB) were
;fn:r;e‘;gju‘l’t?rfgaitna 234 1,103| | BEGIN: BEGIN GREPDATAFILE(*,*,* Null,* Null,Null,*,* Null Null,*,Null,*.*,* Null, Null,/RCUR); 1521 SQLn312V | 3122236
20,782 loops. | }
52 228 FetChQ “0602h Data COﬂtrO' (00000) This is not one 1521 SQLn312V 3122236 Still only one TCP
blue rectangle, /| connection.
12,749 rows of data 353K 2,636K(20781 x Fetch Continuation itis 20,781 thin | :1521 SQLn312V | 3122236
(0.5 MB) were blue lines.
retrieved 11 at a time, 96 18(3 x Commit ‘ 1521 SQLn312V 3122236
resulting in 1,159 s ~N
loops. 177 370|SELECT: SELECT 2 columns FROM _DATAFILE_LOG"--1017h Format Control 1521 SQLn312V | 3122236
19,686 537K|1158 x Fetch Continuation 11 [] clientreaction 41.5% loops| 3122236
_] citsvcloop-delay 8.0%
y [service loop-delay 18. 7%21948
166 242|035Eh: SELECT 5 columns FROM DATAFILE_LOG"; Close--1017h Format Control] server time 31. 3122236
381 72|INSERT: INSERT INTO _DATAFILE_LOG" (5 columns) VALUES (*); Close--Ol h 15621 SQLn312V \3122236
10:26:54 10:27:00 10:27:06 10:27:12 102718 10:27:24 10:27:30 Transaction count is
NetData Chart Friday [21,948 transactions in 32.9822 secs]__ always here.

Application Performance © Phil Storey 9

SM

B File Server

Here there is one TCP connection to a single SMB file server.
A total of 26.7 MB of data is downloaded via 2,622 Read requests (only 10 KB each) taking 4 seconds for overall completion.
This 6.5 second overall task would become 57 seconds without remediation.
Notice the large amount of grey “client” time, where the user PC has to handle all those SMB requests. It also takes 1.8 seconds of
network time to transfer 26.7 MB. Could users live with this function taking nearly a minute?

Copyright Measure IT . . H
Time Summary and Transaction List Client Sioonds oo
cmeores: 0 10% 0% 30% 40% 50% 60% 70% 80% 90% 100% Mg fﬁenr;'f; i ;1?,1%?13 }%E%
- I 5> 5 Loops 05112 1
bk ot | - _ Total message-transfer Total — 6.5188 100.0%
o3 Client reaction time Service = L Response Alt LoopDelay +50.6039 x 7.8 Very serious!
— R";‘:'“ max. 1.0902 secs L L Alt. Total 571227 x8.8
Heytes "0 Seconds 1 15 2 25 3 35 4 45 5 55 & 65 7 Sewer pot Protocol ConnlD
| | 1
3450 2600|125 x Trans2 Query Path Info: 03ECh Basic Info-- 10.10.1.101:; 445 /SMB 2235&
2622 SMB Reads, 4070 4584/25 x Trans2 Find First: 0104h File and Directory Irllfo-- 10.10.1.101: 445 | SMB 223613
retrieving 26.7 MB. 830 B95|5 x NT CreatedX: 10.10.1.101: 445 | SMB 223613
One TCP
[165K 26.74M| 2622 x Read&X: -- l 1 10.10.1.101:; 445 SMB 223613 connection.
| This time, SMB.
1,350 774 I || 18 x Lok&X: -- 10.10.1.101:; 445 SMB 223613
|
225 195(5 x Clulse: - ’ | 10.10.1.101: 445 SMB 223613
126 1,465|2 x Read&X: -- 10.10.1.101; 445 SMB 223613
) [client reaction 46.5% loops
152 144(2 x Trans2 Query File Info: 03EEh Internal Info-- | [cit svc loop-delay 0.4% 10.10.1.101:; 445 SMB 223613
] Service loop-dety 0.4% 2701
T service loop-deiay 0. .
52 41| Write: CJ swioop-dinmsg 35%32857 10.10.1.101:; 445 SMB 223613
,] servertime 17.3%
72 51| Write&X: -- £ respnse msg time 28.4% 10.10.1.101: 445 QMB 22359
" 16:02:01 16:02025 " 16:02:04 16:02.055 " 16:02:07
NetChart Thursday [2,706 transactions (10 unigue) in 6.5188 secs]
Application Performance © Phil Storey 10

Oracle Server — Network Constraint

A total of 2 MB of data is downloaded from an Oracle server via 134 requests (about 16 KB each). 95% of the overall time here was
network data transfer time (blue). 28 seconds to transfer 2 MB is around 72 KB/s or 0.5 Mbps.
This 29 sec task would only become 35 secs after moving. However, network transfer speed is also an issue here, not just RTT.

Therefore, we also need to ensure that our connection to the cloud (or new DC) is provisioned with enough capacity.
It could still be worth a conversation with the application developer to retrieve larger chunks of data and reduce the 134 loops.

13,400 rows of data
(2 MB) were retrieved
100 at a time,
resulting in 134 loops.

Application Performance

Copyright Measure IT

Time Summary and Transaction List -y
— 0% 20% 30% 40% 50% 60% 70% 80% 90% 100% Msg T?fr?é'fce? 292333 9%1%2
basic mode! Total message-transfer time ex loops B | - L%glt); zg-glgg 1083;/2
beond Senvice response-message time ex loops Alt LoopDelay _+5.5688 19.2% An extra 5.5
— R";;"*’ Alt. Total “34.5127 119.2% secs may be OK.

eytes " 0 Seconds 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Sewver pot Protocol ConnlD

277 64| UPDATE: UPDATE PLUGIN SET 3 columns WHERE NAME = * ~ AND FAMILY = * » AND TYPE = 1521 @Lnet 48964%\
752 1,097| SELECT: SELECT 27 columns FROM PLUGIN INNER JOIN SECRIGHTS S_AA ON' (S_AA 1521 | SQLnet 4896419
1,064 72| UPDATE: UPDATE PLUGIN SET 15 columns WHERE PLUGINID=:15 AND USERID=:16 AND 1521 | SQLnet 4896419

284 181| SELECT: SELECT 3 columns FROM PLUGIN INNER JOIN SECRIGHTS S_AA ON (S_AA 1521 | SQLnet 4896419 | | oneTcCP
51 205 FetchQ: --0602h Data (01403) no data found [client reaction 2.1% 100pS 1521 | SQLnet 4896419 | | connectiontoan
[senvice loop-delay 0.0% 143 Oracle server.
114 128] 0360h: -08h] swloop-dinmsg 0.0% 229 1521 | SQLnet 4896419
[_] servertime 2.2%

117 4,207| 0360h: -0EFEh Data 3 respnse msg time 95.7% 1521 | SQLnet 4896419
288 1,300 SELECT: SELECT 10 columns FROM SECTABLEDEFS A1 WHERE (A1.TABLENAME=") * 1521 | SQLnet 4896419
4,286 71| UPDATE: UPDATE PLUGIN SET 3 columns WHERE PLUGINID=:2; Close--08h Control (00000) 1521 | SQLnet 4896419
1,128 15,868|3 FLECT: SELECT 18 columns FROM CONTACT A1 INNER JOIN SECRIGHTS S_AA ON (S_AA 1521 | SQLnet 4896419
2,244 2,063K| 132 X Fetch Continuation 100: -0602h Data (00000 | 1521 | SQLnet 4896419

17 13,995|Fetch Continuation 100: --0602h Data (01403) no data found 1521 @Lnet 48964y

13:49:04 13:49:08 134912 134916 134920 13:4924 13:4928 13:49:32
NetData Chart Wednesday [143 transactions (12 unique) in 28.9439 secs]

© Phil Storey

11

Three Different Server Types

In this example, the overall function takes 1.3 seconds.
With 42 round trips, it would have just 0.6 seconds added to it (everything else being equal).

Users may not notice the extra 625 ms. However, given that server and network transfer times dominate here, we need to ensure
that our new servers are capable and that our connection to the cloud (or new DC) is provisioned with enough capacity.

Colour coded breakup of times. There’s a lot of server
(yellow) and network time (blue) due to the large responses.

Copyright Measure IT . . H
Time Summary and Transaction List Client G oonds
Service 0.7159 53.9%
Categories: U 10% 20% 30% ! 50% B60% 70% 80% 90% 100% Msgérﬁgggeé gggg;ﬁ; 233&
- . . o Total message-transfer Total ~ 1.32821000%| | Anextra06
; ient reaction Serwvice processing time Response Alt LoopDelay +06244 47.0% secs may belOK,
— R";‘:'“ Alt Total ~— 1.9526 147.0%
e ytes "0 Seconds02 03 04 05 06 07 08 09 1 11 12 13 14 Sewver pot Protocol ConnlD
182 1678 4 xDescribe | (F cTontreacion——175% o0ks 1521/ SQLnety 3174118
[] service loop-delay 0.3% 27
[Jsvwriloop-dinmsg 01% 15
509 1,.247|4 x BEGIN 1 servertime 53.9% 11521 SQLnetV 3174116| | 8TCP connsto 3
N [respnse msgtime 28.2% | different servers.
204 6594 x FetchQ 11521| SQLnetV N74116
34 152| 2 % Fetch Continuation 1 1521 SQLnetV 3174116
5 requests
returning
182 KB. 1,240 1,080|5 x lAnywhere 2999| Anywhere 9600671
180 182K]5 x |Anywhere '2999| Anywhere 9602171
56 70[3 x Tower Technology || m 2900 QwerlDM 2 cow
1425017 1425:02 14:25023 1425026 0 0 14:25:029
NetChart Monday 27 transactions in 1.3252 secs

Application Performance © Phil Storey 12

Four Different Protocol Types

In this example, the overall function takes 796 seconds. It has a mix of protocols, including 95 TN3270 requests to a mainframe.
With 2442 round trips, it would have 35 seconds added to it. A 4.5% increase may be acceptable for this function.

Of interest here is that 90% of the time for this function is grey, meaning that it is internal processing (no network activity).
The place to start looking for performance improvements is within the application code on the user’s PC.

Copyright Measure IT

Time Summary and Transaction List
0 0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Categonies:

Msg Transfer 20.4462 2.6%

seconds

Large time of no

Client 722.3860 90.8%
Service 51.7948 6.5%

network activity.

An extra 35 secs
(4.5%) may be
OK.

181 connsto 4
different servers,
incl mainframe.

basic model ’ ‘ | 24425 Loops _ 1.0110 __0.1%
broad ci — Sy | Total 795.6381 100.0%
» lent reaction time v | Alt LoopDelay +35.6265 4.5%——

— Rd::e max. 42.8201 secs Alt. Total 831.2645 104.5%
a bytes P 0 Secgnds 12.0 1EIIU 2110 BQD 3@0 42‘0 48ID 51}0 BDD BBD ?20 ?80 BJ}EI Server: port Protocol ConnlD
54249 160K|542 x SELECT || | || | 4100 / TDS-5 3627560,
507 reduests 323 521 3 X EIEGIN 4100/ TDS5 3627560
e 7127 127422 x INSERT |] 4100| TDS-5 3627560
i 48 6?| PA_RECORDS : --result of stored proc 4100, TDS-5 3627560
[50032 179K 184]}: [Anywhere | :2999| Anywhere 11 conns
17,0688 9,707K '323)x fAnywhere :2999| Anywhere 11 conns
5742 57394 87 x Open Conn 'ports| TowerlDM 87 conns
414 188| e] | 8 x Tower Techno[ni 12900| TowerlDM 5 conns

3389 23772 x| | | [NI | N[| n 23| Telnet 4160775|
1748 3516|85 x Tower Technology] | A [l | 12900| TowerlDM 62 conns
193 851|5 x ALLOCATENEXTID N Il :4100| TDS5 3627560
93 17| DELETE: DELETE FROM Fo WHERE CaselD="and _ . _ CaselD = NULL- _______ 4100 TDS5 3627560
6211 547|11 x UPDATE | | [cllent reaction, | 90.8% loops| 3627560
144 630|6 x USE |] senvice loop-deldy 0.1% 1294 | 3627560
146 88|2 x Stream (v5) | [swrloop-dinmsg 0.0% 1062 | 3627560
2206 296|INSERT UPDATE INSERT (2) UPDATE: INSERT INTO Acti ® columns) VALUES (w |5 Sonnectrealping 9% 87 3527560
9576 1512|6 x BEGIN SELECT UPDATE IF UPDATE IF SELECT IF ELSE UPDATE IF SELECTIF UPDATE [respnse msgtime _2.4% 362756/

11:08 11:10 11:12 11:14 11:16 11:18 11:20

NetChart of 12:49 22/09/09 Tuesday 22/09/09 1,382 transactions in 795.6381 secs

Application Performance © Phil Storey

13

HTTP Protocol

which is time taken to deliver the packets of the large responses.

It is worth noting that this chart was produced with NetData Lite. Further, that this is just page 1 of a 7 page scrollable chart.

This is an example showing HTTP transactions. With 257 round trips, the servers being 10 ms away would add 2.5 seconds to this 19
second set of transactions (a 13.4% increase). 87% of the overall time is “Server (yellow)” with 6.4% being “Msg Transfer (blue)” —

Copryright Messure [T

Time Summary and Transaction Categories

secors
Clie 1.15 B.1%
] -.-w.-m».:.q 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% _ E_nrl'za‘ a4
Ms=g Transfar 2z G.4%
bersic rroaded : 2574 loops 003 0.2%
waad Clignt Service processing time E Total 18596 100.0%
detled — Alt LoopDelay _ +2.54 12.4%
Alt. Total 21.50 113.4%
REﬁEESF "‘ngp 0D Seconds 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 ﬁ.ﬁ Server. port Protocol ConnD
16,025 447K[[10 J] |[I]] | 2sxGET 23.235.46.193: 80 HTTP 25 conns
287 KB of 6,573 435r{|_=|JI 11N . 13 x GET £3.88.100.171: 80 HTTP 13 conns
requests 14,102 382K | Ol 22xGET 23.23546.193: 80 HTTP 22 conns
returning 8.5 16,666 468K\ (LI CEE 1 | 2excer 23.23546.193: 80 HTTP 26 conns
14,743 433k | =z3xcer 23.23546.193: 80 HTTIP 23 conns
MB of 15,384 427K L1 24 x GET 23235.46.193: 80 HTIP 24 conns
responses. 6,415 396K| [| 11 B 13xGET £3.88.100.171: 80 HTTP 13 conns
14,102 s24k| TPCRE] 22 x GET 2323546.193: 80 HTTP 22 conns
6,002 271K| 1] 12 x GET £388.100.171: 80 HTTP 12 conns
7,008 297K| 1§ ILE 14 x GET £3.88.100.171: 80 HTTP 14 conns
1,765 1,042 | 2% GET 173.194.43.3: 30 HTTP 2 conns
2472 1,047 3% GET 23.67.24451: 80 HTIP 3 conns
1,210 4,998 2% GET 7412522625 80 HTIP 2 conns
5900 254K B 12xGET 63.38.100.171: 80 HTTP 12 conns
052 1,058 GET: IN4254/adjif=2 lifescripthealth,_centers—200 textjavascript 74.12522660: 80 HTTP G379163
4537 200K L] ! 9xGET £3.22.100.171: 80 HTTP 9 conns
ged4 412 GET: /pixel. gif—200 image/gif £47237.05197: 80 HTTP 7800995
1,138 38,510 | 3 x GET 547209.185.183: 80 HTTP 3 conns
180 2523 | 5 x GET £3.33.100.183: 80 HTTP 5 conns
944 18,475 GET: /gallsry/hotiviral page/2/it—200 text/html 23.23546.193: 80 HTTP 2066783
70 273 Reguest. unknown—400 text/himl; no length ind; term by server 23.235.46.193; 30 HTTP 2067283
2808 3,172|2x GET L 64.12.21.3: 80 HTTP 2 conng
1209 5154|2 % GET | £3.82.100.184: 80 HTTP 2 conns
287K] 8,554K ' 023732 023734 0237:36 023738 023740 023742 023744 023746 023748 page 1/7
Mesilhatas Chiard o 17:11 1040220 {MesiDrasta) Friday 01/08/14 584 wrarmaciones [0 in 78 categories in 18,9560 seos

Application Performance © Phil Storey

Mostly server

time but some
packet delivery
time.

Many TCP
connections to
many servers.

This is page 1 of

7 overall pages.

14

How to Produce a Waterfall Chart

To produce a chart like the ones in this presentation, first produce a Packet Timing chart in NetData. When loading data, packets
must also be loaded in order to display the timing breakdown table at the top right of the Waterfall chart.

The “Waterfall” button will toggle the chart style. However, more options are available via the “Format” button. The yellow
highlights show the settings used to produce the chart on the previous slide.

First produce a “Packet Timing” chart — which will
look something like this.

To get the time summary table, packets must be
loaded.

The “Format” button in the top left of the
Timing chart will show this window.

Alternatively, use the “Waterfall” button
to directly toggle chart modes.

e Packet &Transa\t\gn:nn Timing (MNetData) — O >
m_
Format #Back ag SelConns | WriScroll Trans Tips Addresses | Copy Sawve Table Eaterfall)
Packets [Flow I|Tim& Distrib | Load Data 7 | Close
oy — . e er] B e S e oy p——
T \ Pa(:ket TIﬂ"IIr'IQ g;.}it”ji{l-aﬁ'f_”f_"l:WI'&'.?:I-;-\L'JM'.L'J'II sﬁstttfy'l'lﬁn%mggjyt
Seconds
ool L 2 % 4 & 8 T & 8 0 13 12 13 4 15 18 17 18 13
R il * I -t @l *
| #*
o [-
800 r g =
k] +
iél o
w - ¢£‘“‘ *
400 -
W* .
* ¥ o afer clormure
200- _ f a1t
.. | |
it +
023730 0ZATAZ 0 023734 0RAT3E 0 OmITAR 0 02ZAT4D 0 0ZAT4Z 0 0ZIT44 02a746 02AT4E
MesiDiata Chart of 17:33 1040320 {MesDrarta) Friday 01/08/14 13,965 pewcoes=

Application Performance

© Phil Storey

.

Auto Server names or addresses [| Clients
[] Time of day start:| 02:37:30.000515 Port numbers Protocols [] Locatn
[] Time of day end: |02:37:48.9245905 Connection D= [] Order by ID [] Rev.

Socket bands Colour by| Connection

Marker size: 5
Legend size: 75

Marker legends Event stripes -~

Transaction bars Shaded 30 []
Propagation bars in Meszages
[] Server Ack propagation bars]

Indicate elapsed seconds at top of chart
Automatic zoom Snap to grid

|:| Allow secondary connections (e.g. files)

Write | trans category and signatures L

Timing Chart VWaterfall List Dizplayed Transaction Claszes menu

List () Individual transactions () Trans types i) Unigue trans (@) Categories

1

Fow height: -1 5

|:| Exclude client time from table percentages

Effect of aternative lnop-delay: ms
0.0 Modelling

Allow multiple pages, to display legends of list tems

Time-component summany

(if packets loaded)

Accept Cancel

Size Re-plot

15

Conclusions

Performing an analysis of application behaviour before servers are moved between data centres (or to the cloud) can provide an
enormous benefit to the project team.

a) A data centre (or cloud) move comes with a long list of risks and unknowns.
b) The exact behaviour of an application is rarely fully known by the team that “owns” the application.
c) This type of analysis reduces unknowns and reduces risks. More so if done early in the project timeframe.
d) Revealing the exact behaviour of applications can provide early notice of:
* Which applications/servers can be moved with no (or little) expected performance impact.
* Which applications/servers will have a performance impact —and how much?
. Exactly why applications are predicted to have a large performance impact?
* Workable remediation options that can be proposed and implemented.
. Remediation options that can be implemented and tested well in advance of the physical server moves.
e) A similar traffic analysis can be used to determine which servers should be moved as groups.

If you’d like to discuss the possibility of performing this type of analysis in advance of your project (or if you've already moved
and want to determine why you now have degraded performance), please get in touch via my contact details on the next page.

Application Performance

T
WIRESHARK

Phil Storey

Phil@NetworkDetective.com.au

www.NetworkDetective.com.au

www.linkedin.com/in/philipstorey3/

@PhilStorey24

www.youtube.com/c/NetworkDetective

ask.wireshark.org: @philst

© Phil Storey

) Detective

17

mailto:Phil@NetworkDetective.com.au
http://www.networkdetective.com.au/
http://www.linkedin.com/in/philipstorey3/
https://twitter.com/PhilStorey24
http://www.youtube.com/c/NetworkDetective
ask.wireshark.org
https://ask.wireshark.org/users/26122/philst

