
What Do

TCP Selective Acknowledgements (SACKs)

Look Like?

Part 1: Investigating Simple Selective Acknowledgements

Phil Storey

#1 in the Series: Understanding Wireshark Outputs with NetData Charts.

PacketLife.Net Blog

Simple TCP Selective ACKs © Philip Storey 2

The capture file, “TCP_SACK.CAP”, used in this video came from a PacketLife.Net blog by Jeremy Stretch.

http://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/

Click this link to download

“TCP_SACK.cap”

This is what Wireshark tells

us about Selective ACKs.

Download the CAP file and follow along yourself.

http://packetlife.net/blog/2010/jun/17/tcp-selective-acknowledgments-sack/

Wireshark Packet List
Here Wireshark tells us the story:

#1, #2, #3 are a 3-way handshake. RTT = 22ms. Both sides support the SACK Option.

#4 is a HTTP GET from the client. #5 is the server’s ACK to that GET.

#6 - #28 are server data packets, with corresponding normal ACKs.

#29 is the last normal ACK before a “gap”.

#30 is a data packet that followed a “gap”. There should have been a data packet before #30.

#31, #33, #35 and #37 are SACKs that followed data packets #30, #32, #34 and #36. A SACK also acts as Dup-ACK.

#38 is a retransmission of data that “fills the gap”. This data should have been before #30 but was lost in the network.

#39 is a normal ACK that acknowledges all the data so far (effectively just acknowledging the retransmission, #38).

Simple TCP Selective ACKs 3© Philip Storey

This 19ms Data-ACK

is the shortest RTT?

Wireshark SYN / SYN-ACK
SACKs are a TCP Option and cannot be used within a TCP connection unless both ends agree in the TCP Header Options

fields within the 3-way handshake. Here is the Wireshark information from the first two packets in our capture.

Simple TCP Selective ACKs 4© Philip Storey

#2

#1

Both sides must specify this

Wireshark ACKs and SACKS
The 6 boxes here show the TCP sequence number information contained within the last 6 ACKs and SACKs in the capture.

The “left” edge of the first SACK (18825) is 1448 larger than the 17377 in the prior normal ACK. This tells us that the “gap” was

size 1448. The SACK “right” edges increment by 1448 but the “left” remains unchanged at 18825 until the retransmitted data

packet (remember #38) fills that 1448 sized “gap”. A final normal ACK ends the SACK sequence by acknowledging all data.

Simple TCP Selective ACKs 5© Philip Storey

#29

#39

24391 represents all the data so far.

This last normal ACK brings us to a

fully ACKed state.

#31

#33

#35

#37 Note the unchanging “left” edge –

but incrementing “right” edge.

#31 : 20273 – 18825 = 1448

#33-#31: 21721 – 20273 = 1448

#35-#33: 23169 – 21721 = 1448

#37-#35: 24391 – 23169 = 1222

#37-#31: 24391 – 18825 = 5566

Wouldn’t it be nice if Wireshark

subtracted these two numbers for us!

Size of “gap” is

#31-#29: 18825 – 17377 = 1448

NetData – Packet Flow Chart

Simple TCP Selective ACKs 6© Philip Storey

Packets (segments) are now vertical strips, with height representing TCP payload size.

Observe that our “full” payload sizes here are 1448 instead of the usual 1460 because TCP Timestamps are enabled.

The left y-axis measures bytes transferred (TCP Sequence Numbers) and the x-axis is time of day. This means that normal

flows will work up from the bottom left to the top right of the chart. Chart items related to the various TCP windows use the right

y-axis.

Shapes, colours and position are used to present different packet types and sizes. TCP acknowledgements are displayed as

window edge lines that will “step up” at the time the ACKs are estimated to be received by the sender.

Here, SACKs “look

like” shaded areas

These small numbers

count the Dup-ACKs

Wireshark: TCP-Trace Chart

Simple TCP Selective ACKs 7© Philip Storey

Packets (segments) are vertical strips, with height representing TCP payload size.

We can see our block of 4, block of 8, block of 4 (with one missing) then the retransmission of 1 to fill the gap.

The grey line under the packets is the ACK line (similar to NetData) but it is drawn as we’d see normal ACKS.

There is no indication or hint of SACK behaviour here though.

Wireshark developers please take note – could you make Wireshark display SACK information?

SACK Fun Facts!

Simple TCP Selective ACKs 8© Philip Storey

RFC 2018: https://tools.ietf.org/html/rfc2018

SACKs are a TCP Option – they can’t be used unless both sides agree during the 3-way handshake.

SACK left/right sequence information goes in the TCP Options extended header.

When any optional TCP headers are used, the TCP data payload is reduced accordingly*.

One left/right pair of sequence numbers acknowledges one contiguous data sequence.

• By inference, each pair of sequence numbers announces the existence of one sequence gap.

All SACKs also contain the “normal” data acknowledgement sequence number in the usual “TCP Ack” field.

• SACKS are therefore also considered to be Duplicate-ACKs.

The TCP Options extended header has a maximum total of 40 bytes.

• Bytes consumed for a SACK pair = 2 + (8 per pair).

• 4 pairs = 2 + (8 x 4) = 34.

• Thus, there can only be no more than 4 x SACK sequence pairs. (Implying 4 x non-contiguous “gaps”).

• If other TCP Options (such as Timestamps) are enabled, must have fewer SACK pairs.

SACKs are not “legally binding” – the sender of a SACK can renege later.

• Normal ACKs are the only method to officially acknowledge data.

• SACKs should have no effect on the receive window.

* In seven years of performing packet analysis, the author has seen only one example of SACK information included in a data packet. This was

from a NetApp File Server. It seems that common practice is to include SACK information only in acknowledgement packets.

https://tools.ietf.org/html/rfc2018

NetData – Packet Timing Chart

Simple TCP Selective ACKs 9© Philip Storey

Client and server packets are displayed in their own different bands. Horizontal axis is time of day.

Shapes, colours and position are used to present different packet types and sizes. All items in the legend will appear

somewhere on the chart.

The colours for the various transaction timings highlight the respective portions of the packet flow – and the background

transaction descriptions help us to keep track of what we’re looking at.

Here, SACKs “look like” pink diamonds.

NetData – Dialogue Chart (TCP_SACK)

Simple TCP Selective ACKs 10© Philip Storey

The Dialogue Chart (with Selective ACK chosen as the highlight) shows some summary information for this capture file.

Further below are some table views for Transactions, Connections and Events.

NetData - Performance Chart (Transactions)

Simple TCP Selective ACKs 11© Philip Storey

Note the horizontal axis is “time of day” and the left vertical axis is transaction response time.

The CAP file contains one TCP connection, with a 22 ms 3-way handshake followed by a HTTP GET that took an overall time

of around 110 ms. The delivery of the 24.4 KB response packets took 88 ms – and there were lost packets towards the end of

the transaction.

Packet losses occurred

at this point in time.

NetData – Packet Table

Simple TCP Selective ACKs 12© Philip Storey

The symbols used on the Packet Timing chart are also shown in the Packet Table for cross-referencing.

NetData also provides various tables – that can easily be sorted and exported to CSV. This Packet Table lists all 39 packets

that make up the “TCP_SACK.cap” file. This is sometimes useful to sort/track TTLs or IP IDs, sort by packet size, examine

TCP Flags, etc.

Phil Storey

www.NetworkDetective.com.au

au.linkedin.com/in/philipstorey3

@PhilStorey24

www.youtube.com/c/NetworkDetective

© Philip Storey

http://www.networkdetective.com.au/
https://au.linkedin.com/in/philipstorey3
https://twitter.com/PhilStorey24
https://www.youtube.com/c/NetworkDetective

