
of 67

TCP/IP Protocols
Transmission Control Protocol / Internet Protocol

The purpose of this presentation is to show that the TCP/IP protocols, and the way that higher layer
applications make use of them, can have significant impacts on data flow throughput.

Often, when “the application is slow”, the correct fix is to modify the application and/or the TCP
settings. This fact is not usually readily apparent.

We discuss the behaviours of TCP/IP packet flows under various circumstances and define a variety
of protocol terms. We also compare the original TCP and “new” TCP performance differences.

The effects of packet losses – and how TCP/IP handles them - will also be discussed and presented.

Small packet losses can have an un-expectedly large impact on throughput.

The NetData Pro packet analysis software tool is used to display the transaction and packet flow
data.

Phil Storey
Phil@NetworkDetective.com.au

TCP/IP Protocol Performance © Phil Storey 1

of 67

Real World Performance Problem
A question appeared on the site “Ask Wireshark”.

https://ask.wireshark.org/questions/55972/slow-writes-even-

slower-reads-spanning-wan-to-netapp

The problem had been occurring for a long time, happened the

same way every time and nobody knew what was the cause.

The symptom was that an SMB file transfer of the exact same file,

between the same user PC and the same NetApp file share

server, always took longer to download than to upload.

The Wireshark throughput charts showed that the throughput of

the download (SMB Read) versus the upload (SMB Write) varied

significantly and formed “sawtooth” patterns.

TCP/IP Protocol Performance © Phil Storey 2

https://ask.wireshark.org/questions/55972/slow-writes-even-slower-reads-spanning-wan-to-netapp

of 67

Wireshark Experts Also Looked At It
Wireshark experts in Europe blogged about it.

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

Note the multiple sawtooth pattern in the “H-to-C” case (SMB Read) with the 200 MB file taking

24 seconds. The “C-to-H” case had only one big sawtooth and took just 13 seconds to transfer

the same 200 MB file.

TCP/IP Protocol Performance © Phil Storey 3

13 Seconds

24 Seconds

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

of 67

40 KB

Geometry Refresher
K

B
 P

er
 S

ec
o

n
d

0

2

4

6

8

10

12

14

16

18

20

At 20 KB/s, it would take just 2 seconds to transfer 40 KB of data (green).

To transfer the same 40 KB with a linearly increasing throughput rate would take twice as long (yellow). Assuming that we eventually ramp up to the full 20 KB/s.

If we only ever ramp-up to 10 KB/s, and form a sawtooth pattern (red), the overall time doubles yet again.

TCP/IP Protocol Performance © Phil Storey

Time842 6 10731 5 9

2 Seconds 4 Seconds

20 KB

8 Seconds

20 KB

40 KB

4

of 67

TCP/IP Protocol “Education”

TCP/IP Protocol Performance © Phil Storey

Before we can run through the live packet analysis, which is fairly complex, we first
need to run through some underlying details of:

- How TCP/IP works.
- How to understand the charts and graphs that NetData produces.

I’ve tried to “kill two birds with one stone” by combining the two lessons.

This presentation can be downloaded (as a PDF) from:
http://www.networkdetective.com.au/downloads

5

http://www.networkdetective.com.au/PDFs/TCP-Performance.pdf

of 67

TCP/IP Protocol Terminology

These terms are described in this presentation.

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”

“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”

“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (OOO)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 6

of 67

Good Flow – Only “Normal” ACKs Needed
All example packets have TCP payload of 1,000 bytes

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

1

2

3

4

5

6

7

8

9

10

11

12

In this time period, 10 data packets have been received and fully
acknowledged. Only 5 ACK packets were transmitted.

The slope of the packets gives us a visual indication of the
bandwidth (as long as we understand the x-axis scale).

842 6 10

TCP/IP Protocol Performance © Phil Storey

Bandwidth 1 Bit (ms) 1 Byte (ms) Packet Size 1 Packet (ms) 10 Packets (ms)

192 Kb/s 0.00521 0.04167 1000 41.667 416.667

1 Mb/s 0.001 0.008 1000 8 80

10 Mb/s 0.0001 0.0008 1000 0.8 8

100 Mb/s 0.00001 0.00008 1000 0.08 0.8

500 Mb/s 0.000002 0.000016 1000 0.016 0.16

1 Gb/s 0.000001 0.000008 1000 0.008 0.08

10 Gb/s 0.0000001 0.000001 1000 0.0008 0.008

These figures ignore TCP/IP, Ethernet and other overheads.

Time
8

of 67

Good Flow – “In Flight” Data

Artistic Licence:

Receiver ACKs have now been shifted right by 1 x Round Trip Time (RTT).

This stylistically matches sender transmitted data packets with the corresponding ACKs – as seen at the sender.

10

10

In this time period, we say that
there are 10 “packets in flight” or
10 K “bytes in flight”.

As ACKs are received, the “in flight” data
reduces. It would be zero here.

Data that has been transmitted, but for which ACKs
have not yet been received, is termed, “in flight”.

RFC 5681
https://tools.ietf.org/html/rfc5681
Uses the term, “Flight Size”.

TCP/IP Protocol Performance © Phil Storey

Time

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12

14

16

18

20

9

https://tools.ietf.org/html/rfc5681

of 67

Bad Flow – Only “Normal” ACKs Allowed
All example packets have TCP payload of 1,000 bytes

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3

p

Red means
“follows a gap”

Green means
“fills a gap”

TCP/IP Protocol Performance © Phil Storey

p

Time

“Fast Retransmission”:
A packet retransmitted in
response to 3 Dup-ACKs

11

1

Count of
“Dup-ACKs”

of 67

Bad Flow – Only “Normal” ACKs Allowed.
One Round Trip Time Later

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12

14

16

18

20

10

11

5

2

On receipt of our first ACK, the sender knows that we have received the first packet.

The 4 x Dup-ACKs indicate that Packet #2 didn’t arrive – but at least 4 (out of the remaining 8) other

packets must have arrived (each triggering a Dup-ACK).

However, the sender can’t tell how many or which of the last 8 packets went missing.

To avoid unnecessary retransmissions, the sender retransmits just the missing Packet #2 data – and may

send more data too. 2 new data packets are shown here.

We will receive these 3 new packets one RTT after the first packet burst.

Our response will be to send a normal ACK for Packet #2, followed by 2 x Dup-ACKs – one each for those

2 new data packets.

Our first ACK is known as a “Partial ACK”, because we have still not yet acknowledged all outstanding

data.

p

TCP/IP Protocol Performance © Phil Storey

Time
12

of 67

On receipt of our “partial” normal ACK, the sender knows that we’ve now received the Packet #2 data.

The 2 x Dup-ACKs now indicate that Packet #3 had never arrived, so the sender retransmits the Packet

#3 data (in that new green packet).

Again, there can be fresh data – so 2 new data packets are shown here.

We will receive these new packets after another RTT.

Our ACK response, shown here, will be to send a normal ACK all the way up to 4,000.

We’ve had the Packet #4 data since the beginning and the newly received green Packet #3 data finishes

filling the first original “gap”.

However, we still have the original second gap, so we can only send more Dup-ACKs at the 4,000 level.

Bad Flow – Only “Normal” ACKs Allowed.
Two Round Trip Times Later

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12
10

11

5

12

2p

2p

14

16

18

20

TCP/IP Protocol Performance © Phil Storey

Time
13

of 67

On receipt of our normal ACK, plus the two Dup-ACKs, the sender knows that

we’re still only up to 4,000.

The sender retransmits the Packet #5 data (in yet another new green packet).

Just for this example, we continue with 2 packets of fresh data.

Bad Flow – Only “Normal” ACKs Allowed.
Three Lost Packets Cost Us Three Round Trip Times

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12
10

11

5

12

2p

2p

12

We’ve had the Packet #6 data since the beginning and the newly received

green Packet #5 data finishes filling the second original “gap”.

We have now received a total of 16 packets, containing 16 KB of

contiguous data.

Our ACK response will be to send a normal ACK all the way up to 16,000.

We’re now “fully ACKed” and back to normal.

14

16

18

20

TCP/IP Protocol Performance © Phil Storey

Time
14

of 67

If There Was Only 10 KB.
TC

P
 S

eq
u

en
ce

 (
x

1
,0

0
0

)

0

2

4

6

8

10

12
10

5

p

p

14

16

18

20

If there were only 10 KB to be transferred, the result here is that it has taken 4 RTTs to transmit what should have been done in one round trip.

Our effective throughput has been divided by four.

Main message: Packet losses cost us round trip times.

TCP/IP Protocol Performance © Phil Storey

Time
15

of 67

Delayed ACK and Retransmission Timeout (RTO)

Time

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12

10

12

14

16

18

20

9

TCP/IP Protocol Performance © Phil Storey

Imagine that the lost packet was the 10th of our set of 10. From the receiver’s point of view, we have received just 9 packets. The first 8 packets

have been acknowledged immediately but not Packet #9, because we only immediately ACK every two packets. We wait for another packet to

arrive. However, we can’t wait forever and we will issue an ACK after a delay (usually 200 ms). This kind of ACK is called a “Delayed ACK”.

At 200 ms, these can be very costly in terms of time.

As far as the receiver knows, all packets are fully acknowledged. However, the sender is still waiting for an ACK to Packet #10. It will only wait for

whatever its “Retransmission Timeout” value is set to. This should be longer that the Delayed ACK time and is commonly 300 ms, 500 ms or even

a full second. It is calculated dynamically based on observed RTTs.

These can be even more costly in time, especially if it occurs regularly (or if single packet server responses get lost).

The receiver sends an ACK to the single packet after a
delay of 200 ms. It thinks everything is done.

The sender sends a retransmission after its RTO
expires. Should be longer than the Delayed ACK time.

200 ms Delayed ACK

Retransmission Timeout (RTO)

Delayed ACK??

16

of 67

TCP “Slow Start”

Time

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12

1

14

16

18

20

In real life, the first 10 packets to be transferred in a brand new TCP connection would actually look like this. TCP always conducts a “trial” within a new

connection by sending one (sometime more) packet first, then ramping up exponentially by doubling the number of packets per round trip.

The initial 3-way handshake is also shown here, as well as the 3-way “Final” connection termination.

The result here is that (if it had to be done on a brand new TCP connection) it would take 5 RTTs to transmit 10 packets worth of data plus 1 more RTT to

terminate the connection.

Our effective throughput would perhaps be only a fifth or sixth of what we might expect.

Main message: Small file transfers over “new” TCP connections cost us several RTTs.

TCP/IP Protocol Performance © Phil Storey

2

2

4

1

Syn
Syn-ACK

ACK

Request data

2 3 4 5 6 7 8

Final

Final ACK

17

of 67

TCP/IP Protocol Terminology

Where are we up to?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”

“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”

“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (OOO)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 18

of 67

Buckets and Barrels

TCP/IP Protocol Performance © Phil Storey

At the sender: TCP receives large blocks of data from the
sending application. It assigns sequence numbers and
breaks the data into smaller buckets (segments). It is IP’s
job to put the buckets onto the conveyor but TCP’s job to
track sequence numbers.

14
60

14
60

TCPIP

64KB

14
60

A
C

K

8KB

IPTCP

A
C

K

Spare Barrels

At the receiver: The buckets fill up a “Receive Barrel”
which is of a size determined by TCP/IP and can be
changed at any time.
The application removes data from the Receive Barrel at
its own pace.

Buffer
Barrels

Transmit
Barrel

Receive
Barrel

App
App

32KB
19

5 KB1

of 67

Buckets and Barrels

TCP/IP Protocol Performance © Phil Storey

The sender cannot put too many buckets onto the conveyor at once, because the Receive Barrel cannot be allowed to overflow. The
receiver can vary the size and informs the sender of the current size of the Receive Barrel with every ACK (or data) bucket.
TCP can acknowledge the bucket data even though the application has not yet taken it.

More buckets can be placed on the belt as ACK buckets arrive back from the receiver. Buckets that have been placed on the belt but
which have not yet been ACKed are called “In Flight”.

The sender can choose to send fewer – but it must never have more “in flight” data than the allowed Receive Barrel size.

14
60

14
60

TCPIP

64KB

14
60

32KB

A
C

K

IPTCP

A
C

K

Spare Barrels

Buffer
Barrels

Transmit
Barrel

Receive
Barrel

App
App

8KB

14
60

20

5 KB1

of 67

Buckets and Barrels

TCP/IP Protocol Performance © Phil Storey

If the receiver’s application stops “emptying” the receive buffers. The receiver’s TCP will begin to reduce the advertised Receive Barrel
size and, if necessary, advertise a “Zero Barrel” size – which we term, “Closing the Receive Window”.

When the receiver does this, it needs to make sure that it still has enough Receive Barrel capacity to catch the buckets already “in flight”.

14
60

14
60

IP

64KB

14
60

32KB
A

C
K

IPTCP
A

C
K

Spare Barrels

Buffer
Barrels

Transmit
Barrel

Receive
Barrel

App
App

8KB

14
60

14
60

A
C

K

X

zzzzz
A

C
K

If you run a packet capture on a PC or
server, the data is captured here.

We’ll see some “artefacts” of this later.

21

TCP

If the receiving application is “busy” or just
can’t keep up with the flow. It stops or slows
taking data out of TCP’s receive buffer.

of 67

Optimum Throughput

TCP/IP Protocol Performance © Phil Storey

Optimum data throughput is achieved when the sender can keep the conveyor full.

14
60

14
60

64KB

14
60

A
C

K

14
60

14
60

A
C

K

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

A
C

K

A
C

K

A
C

K

A
C

K

Here we have 13 buckets on the way (13 x 1460 = 18,980) but
also 6 ACKs on the way back (which would represent 12 x 1460 =
17520) for a total of 25 buckets “in flight” (36,500 bytes).

The receiver’s 64 KB “Receive Bucket” is more than enough to
handle this flow, in fact, would only ever be half full.

14
60

14
60

14
60

32KB

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

The receiver’s 32 KB “Receive Bucket” and longer,
faster belt mean that we have to stop after 22
buckets (22 x 1460 = 32,120).
The sender has to wait for the ACKs before adding
more buckets to the belt.
The “Receive Bucket” will fill up, then empty, over
and over.

22

of 67

64 KB in Milliseconds

TCP/IP Protocol Performance © Phil Storey

Faster and longer networks mean that a 64 KB Receive Window is not enough these days.
Today we have “Long, Fat Networks (LFNs)”. Long = high RTT ; Fat = high bandwidth.

14
60

14
60

64KB

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

44 x 1460 = 64,240

RTT = Length x 2

Bandwidth 1 Bit (ms) 1 Byte (ms) Packet Size 1 Packet (ms) 44 Packets (ms)

192 Kb/s 0.00521 0.04167 1460 60.833 2676.667

1 Mb/s 0.001 0.008 1460 11.68 513.92

10 Mb/s 0.0001 0.0008 1460 1.168 51.392

100 Mb/s 0.00001 0.00008 1460 0.1168 5.1392

500 Mb/s 0.000002 0.000016 1460 0.02336 1.02784

1 Gb/s 0.000001 0.000008 1460 0.01168 0.51392

10 Gb/s 0.0000001 0.000001 1460 0.001168 0.051392

Time to Transmit 64 KB for Various Bandwidths* Sample Round Trip Times Effective Throughput

*This ignores TCP/IP, Ethernet and other overheads.

Source Destination RTT (ms) Bytes per RT Throughput (b/s) AKA

Sydney Sydney (DWDM) 1 64 KB 524,288,000 500 Mb/s

2 64 KB 262,144,000 250 Mb/s

Sydney Sydney (Cloud) 5 64 KB 104,857,600 100 Mb/s

10 64 KB 52,428,800 50 Mb/s

Sydney Melbourne 15 64 KB 34,952,533 33 Mb/s

20 64 KB 26,214,400 25 Mb/s

Sydney Perth 50 64 KB 10,485,760 10 Mb/s

100 64 KB 5,242,880 5 Mb/s

Sydney Los Angeles 200 64 KB 2,621,440 2.5 Mb/s

Sydney New York 250 64 KB 2,097,152 2 Mb/s

500 64 KB 1,048,576 1 Mb/s

23

of 67

64 KB Per RTT(=23ms) [0.5 secs = 1.2 MB]

TCP/IP Protocol Performance © Phil Storey

Here is what a 64 KB Receive Window on a 1 GB/s network with RTT=23ms looks like. We get an effective throughput just over 20 Mb/s.
There are 48 packets per RTT because the MSS=1360. 48 x 1360 = 65,280. In this ~half second time period we transfer 1.2 MB.

20 Mb/s is only 2.2% of the theoretical maximum throughput of ~900 Mb/s (allowing for overheads in the 1 Gb/s link).

24

of 67

2.5 MB Per RTT(=23ms) [0.5 secs = 25 MB]

TCP/IP Protocol Performance © Phil Storey

Here is what a 2.5 MB Transmit Window on a 1 GB/s network with RTT=23ms looks like.
We get an effective throughput of just under 900 Mb/s. We manage to transfer 25 MB in just under half a second!
There are 1800+ packets per RTT (2.5 MB).

This is 100% of the theoretical maximum throughput of a 1 Gb/s link.

25

of 67

Bandwidth Delay Product (BDP)

TCP/IP Protocol Performance © Phil Storey

The question about throughput can be phrased differently: “Given a particular bandwidth and RTT,”
- “How big does the Receive Window need to be in order to fill up the path?” or
- “What Receive Window will enable the maximum (i.e., constant) throughput?”

14
60

14
60

BDP?

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

?? x MSS

RTT = Length x 2

BDP (Bytes) for Various Bandwidth/RTT Combinations

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

14
60

BDP = Bandwidth X RTT (bits/sec X sec = bits).
[RTT, being “round trip” time, already includes both directions].

10Mb/s X 10ms =
10Kb/s X 10 sec = 100 Kb (= 12.5 KB).

RTT (ms)

Bandwidth 1 2 5 10 15 20 50 100 200 250 500

192 Kb/s 24 48 120 240 360 480 1,200 2,400 4,800 6,000 12,000

1 Mb/s 125 250 625 1,250 1,875 2,500 6,250 12,500 25,000 31,250 62,500

10 Mb/s 1,250 2,500 6,250 12,500 18,750 25,000 62,500 125,000 250,000 312,500 625,000

100 Mb/s 12,500 25,000 62,500 125,000 187,500 250,000 625,000 1,250,000 2,500,000 3,125,000 6,250,000

500 Mb/s 62,500 125,000 312,500 625,000 937,500 1,250,000 3,125,000 6,250,000 12,500,000 15,625,000 31,250,000

1 Gb/s 125,000 250,000 625,000 1,250,000 1,875,000 2,500,000 6,250,000 12,500,000 25,000,000 31,250,000 62,500,000

10 Gb/s 1,250,000 2,500,000 6,250,000 12,500,000 18,750,000 25,000,000 62,500,000 125,000,000 250,000,000 312,500,000 625,000,000

26

of 67

Bandwidth Delay Product (BDP)
Bandwidth-Delay Product refers to the product of a data link's capacity (in bits per second)
and its round-trip delay time (in seconds). The result is an amount of data, measured in bits
(or bytes), that is equivalent to the maximum amount of data on the network circuit at any
given time, i.e., “in flight” data that has been transmitted but not yet acknowledged.

A network with a large bandwidth-delay product is commonly known as a long fat network
(shortened to LFN and often pronounced "elephen"). As defined in RFC 1072, a network is
considered an LFN if its bandwidth-delay product is significantly larger than 105 bits (12500
bytes).

Ultra-high speed LANs may fall into this category, where protocol tuning is critical for
achieving peak throughput, on account of their extremely high bandwidth, even though their
delay is not great.

An important example of a system where the bandwidth-delay product is large is that of GEO
satellite connections, where end-to-end delivery time is very high and link throughput may
also be high. The high end-to-end delivery time makes life difficult for stop-and-wait protocols
and applications that assume rapid end-to-end response.

TCP/IP Protocol Performance © Phil Storey

Sourced from:
https://en.wikipedia.org/wiki/Bandwidth-delay_product

27

https://en.wikipedia.org/wiki/Round-trip_delay_time
https://tools.ietf.org/html/rfc1072
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

of 67

TCP/IP Protocol History
Modern version(s) of TCP/IP have features that improve performance over the original “old” TCP/IP

These new features became necessary as bandwidths increased and exposed the limitations of the original protocol designs.

(64 KB Receive Window and “normal” Acknowledgements).

The most important update in this area was:

RFC 1072 October 1988 https://tools.ietf.org/html/rfc1072

RFC 1323 May 1992 https://tools.ietf.org/html/rfc1323

RFC 7323 September 2014 https://tools.ietf.org/html/rfc7323

The two most important of the “new” features are:

- Window Scaling

- Selective ACKs (SACKs)

These features weren’t commonly implemented until well into the 2000’s! [Linux (2.6.8) - Aug 2004 ; Windows Vista - 2008]

Bear in mind that the “new” features had to work with “old” TCP implementations that knew nothing about them.

TCP/IP Protocol Performance © Phil Storey 28

https://tools.ietf.org/html/rfc1072
https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc7323

of 67

XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Selective Acknowledgement (SACK)

Time

TC
P

 S
eq

u
en

ce
 (

x
1

,0
0

0
)

0

2

4

6

8

10

12
10

3

14

16

18

20

A more efficient way to handle packet losses is with the “newer” Selective Acknowledgement method. SACKs tell the sender exactly which data was

received and which was not received. The sender can respond by retransmitting the exact missing data all in one go.

In this same example as earlier, our 3 lost packets now only cost us one extra round trip for the retransmissions.

Our throughput is improved over the “old” normal ACKs. Note that SACKs also count as Dup-ACKs.

TCP/IP Protocol Performance © Phil Storey

51

Using SACKs, the receiver can specify the exact
missing data (three packet’s worth here). Without SACKs – 3 RTTs

XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX

29

of 67

Selective Acknowledgement (NetData)

TCP/IP Protocol Performance © Phil Storey

Observe that our payload sizes here are 1448 instead of the usual 1460 because TCP Timestamps are enabled.

The left y-axis measures bytes transferred (TCP Sequence Numbers) and the x-axis is time of day. This means that normal flows will work up from the bottom left to

the top right of the chart. Chart items related to the various TCP windows use the right y-axis.

Shapes, colours and position are used to present different packet types and sizes. TCP acknowledgements are displayed as window edge lines that will “step up” at

the time the ACKs are estimated to be received by the sender.

Here, SACKs “look

like” shaded areas

These small numbers

count the Dup-ACKs

30

of 67

TCP/IP Protocol Headers

TCP/IP Protocol Performance © Phil Storey

Sourced from:
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm

Main Information:
- Smallest possible TCP+IP header size is 20+20=40 bytes.
- TCP can be larger (but then TCP payload must be reduced).
- Sequence numbers and ACK numbers are 32-bits each.
- Window size is 16-bits (0-65535 = max 64 KB).

31

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm

of 67

TCP Optional Header Fields

TCP/IP Protocol Performance © Phil Storey

Sourced from:
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Main Information:
- Can increase header size by up to 40 bytes.
- Some options used only in the SYN/SYN-ACK Sequence.
- 32-bit MSS implies 4,294,967,296 but practice = 1460
- Window Scale says 24-bits (but max scale = 14).

32

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

of 67

TCP 3-Way Handshake

TCP/IP Protocol Performance © Phil Storey

Sourced from:
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm

Main Information:
- The initiator is the “client”.
- The timings in your capture can tell you where

the capture was taken.
- Client and server negotiate or make offers for

supported features.
- Intermediate devices (e.g., routers, firewalls)

can modify parameters as they pass through.

Main “Agreements”:
- Maximum Segment Size (MSS).
- Window Scaling supported? If so, Max Scale?
- Selective ACK supported?

33

Capture at client timings: SYN, , SYN-ACK, ACK

Capture at server timings: SYN, SYN-ACK, , ACK

http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm

of 67

Window Scaling

TCP/IP Protocol Performance © Phil Storey

TCP Window Scale option is needed for efficient transfer of data when the
bandwidth-delay product is greater than 64 KB.

The Window Scaling option needed to be compatible with “old” TCP/IP
implementations – so had to keep the 16-bit “Window Size” header field. An
extended header “Window Scale” field is used.

By using the window scale option, the Receive Window size can be increased
up to a maximum value of 1,073,725,440 bytes (1 GB). This maximum occurs
when the scale factor is 14.

65536 * 2^14 = 1,073,725,440

The scale is agreed in the TCP setup and never seen again in any packets.
Each side must remember the other side’s value. If you don’t capture the 3-
way handshake, then you have to guess the scale values.

Due to the “Multiplier”, variations in the Receive Window values can only be
made in “multiplier” units.

The RFCs dictate that a field value of 15 must be interpreted as 14.

Scale Factor Multiplier x 65536 AKA

0 1 65536 64 KB

1 2 131072 128 KB

2 4 262144 256 KB

3 8 524288 512 KB

4 16 1048576 1 MB

5 32 2097152 2 MB

6 64 4194304 4 MB

7 128 8388608 8 MB

8 256 16777216 16 MB

9 512 33554432 32 MB

10 1024 67108864 64 MB

11 2048 134217728 128 MB

12 4096 268435456 256 MB

13 8192 536870912 512 MB

14 16384 1073741824 1 GB

34

of 67

In this “contrived” example:
- The client supports MSS=1460 ; SACK and Window Scaling with scale 4 (x 16)
- The Cisco ASA FW reduces the MSS to 1360 but supports the other options
- The WAN Router doesn’t support SACK so turns it off. The MSS is already smaller than the MSS=1380 that it supports.
- The server supports MS=1460 ; SACK and Window Scaling with scale 7 (x 128)
- The WAN Router doesn’t support SACK so turns it off. It also reduces the MSS to 1380
- The Cisco ASA FW further reduces the MSS to 1360 but leaves the other options unchanged

User, City-A Data Centre, City-B

WAN

1Gbps

Client Server
WAN

Router

WAN
Router

C
is

co
 A

SA

Fi
re

w
al

l

Intermediate Devices Can Modify SYN / SYN-ACK

LANLAN LANLAN

10Gbps1Gbps1Gbps

TCP/IP Protocol Performance © Phil Storey

MSS=1460 ; SACK ; WScale=7 SYN-ACK

MSS=1380 ; SACK ; WScale=7

MSS=1360 ; SACK ; WScale=7

MSS=1460 ; SACK ; WScale=4

MSS=1360 ; SACK ; WScale=4

MSS=1360 ; SACK ; WScale=4

SYN

Result:
Both sides will use:
- MSS=1360
- No SACK.

Result:
Window Scaling of 4
and 7 will be used at
the respective sides.

What if you have a
device that turns off
Window Scaling?

Maybe Not?

35

of 67

Common MSS Values

TCP/IP Protocol Performance © Phil Storey

Sourced from:
http://icourse.cuc.edu.cn/networkprogramming/lectures/Unit6_TCP.pdf

This table lists some commonly observed TCP/IP packet payload values.

1500 - 40 = 1460

36

The diagram shows why 1460 is the maximum possible MSS.

RFC 879
https://tools.ietf.org/html/rfc879

“Long established rule”.

Hosts must not send datagrams larger than 576 octets (-40 = 536)
unless they have specific knowledge that the destination host is
prepared to accept larger datagrams.

MSS Comment

1460 Maximum possible on Ethernet (max Ethernet payload is 1500, minus 40 byte TCP/IP header)

1448 Maximum if TCP Timestamps are enabled (which use "extended" TCP Header fields)

1440 Maximum with Ethernet and IPv6 (due to larger IP header).

1380 Cisco ASA Firewalls commonly modify MSS to this as the SYN / SYN-ACKs pass through.

1360 Cisco ASA Firewalls commonly modify MSS to this as the SYN / SYN-ACKs pass through.

536 "Default" MSS. This must be used if not agreed in 3-way handshake. Can be carried on all
network types without needing fragmentation.
Used to be very common in Windows systems. Some systems will automatically drop packets to
this size if they get no response to full-sized "black holed" packets.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://tools.ietf.org/html/rfc879

of 67

TCP/IP Protocol Terminology

Where are we up to?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”

“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”

“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (OOO)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 37

of 67

Real World Performance Problem
A question appeared on the site “Ask Wireshark”.

https://ask.wireshark.org/questions/55972/slow-writes-even-

slower-reads-spanning-wan-to-netapp

The problem had been occurring for a long time, happened the

same way every time and nobody knew what was the cause.

The symptom was that an SMB file transfer of the exact same file,

between the same user PC and the same NetApp file share

server, always took longer to download than to upload.

The Wireshark throughput charts showed that the throughput of

the download (SMB Read) versus the upload (SMB Write) varied

significantly and formed “sawtooth” patterns.

TCP/IP Protocol Performance © Phil Storey 38

https://ask.wireshark.org/questions/55972/slow-writes-even-slower-reads-spanning-wan-to-netapp

of 67

Wireshark Experts Also Looked At It
Wireshark experts in Europe blogged about it.

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

Note the multiple sawtooth pattern in the “H-to-C” case (SMB Read) with the 200 MB file taking

24 seconds. The “C-to-H” case had only one big sawtooth and took just 13 seconds to transfer

the same 200 MB file.

TCP/IP Protocol Performance © Phil Storey 39

13 Seconds

24 Seconds

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

of 67

Wireshark “Server Response Time (SRT)” Values
Wireshark can calculate “server response time” values for transactions using some well known protocols.

The SRT for an individual transaction is measured as the time between the first client request packet to the first packet of the server’s response. It attempts to measure

the time that the server had to think about the answer before it began delivering the response.

For captures taken at the client end, these times also include the network RTT, because the times are measured as at the client.

That’s why the minimums here are 23 ms.

Why would the NetApp spend more time to process Read requests?

TCP/IP Protocol Performance © Phil Storey 40

of 67

LAN

LAN

User, City-A Data Centre, City-B

WAN

1 Gbps

User PC
(Windows)

NetApp
File Server

WAN
Router

Pa
lo

 A
lt

o
 F

W

PC-to-NetApp Network

10 Gbps? Gbps

1 Gbps

1 Gbps

Minimum RTT = 23.3 ms

TCP/IP Protocol Performance © Phil Storey 41

LANLAN

C
is

co
 A

SA

WAN
Router

1

of 67

Live Analysis of “C_to_H” & “H_to_C”

Will now examine the actual “pcap” files that were made available in the Ask Wireshark question.

First the “C to H” capture, where the client PC sends the 200 MB file up to the NetApp filer shared drive.

Then the “H to C” sample, where the client retrieves the same 200 MB file from the NetApp, copying it back to the local PC.

- Plot the Flow Charts for each file transfer and examine where things went wrong.

- Plot the file transfer throughputs (we know that the WAN bandwidth is 1 Gb/s and the RTT is 23 ms). [BDP = 2.5 MB]

- Look at the individual SMB2 transactions.

- Look at the “Transactions in Progress”.

- Compare the SMB2 protocol behaviours.

TCP/IP Protocol Performance © Phil Storey 42

of 67

C to H Full Flow (13 Seconds)

TCP/IP Protocol Performance © Phil Storey

(1) “Slow Start” ramps up to 138 KB but then something
happens to cause throughput to reduce by a factor of 4.
The client also goes into “Congestion Avoidance” mode,
causing the ramp-up to become linear.

(3) The server’s Receive Window keeps
pace, staying about twice as large as the
client’s Transmit Window.

(2) The linear ramp-up continues without
any further trouble all the way above 720
KB when the file transfer completes.

43

of 67

Live Analysis

TCP/IP Protocol Performance © Phil Storey 44

Now for the “live” analysis of the capture files.

of 67

C to H Flow – End of Slow Start

TCP/IP Protocol Performance © Phil Storey

(1) “Slow Start”
ramps up to 138 KB
per round trip.

(3) The linear ramp-up begins at 25
packets per RTT and increments by 1
packet per RTT from then onwards.

(2) Apparent packet losses (we see retransmissions)
cause throughput to halve twice. The client also
goes into “Congestion Avoidance” mode, causing
the subsequent ramp-up to become linear.

45

of 67

C to H Flow – Zoomed-In

TCP/IP Protocol Performance © Phil Storey

(3) A further retransmission in the next
round trip causes the 2nd halving of the
client’s Transmit Window.

(2) This is confirmed by the receipt of
SACKs, indicating that the black packets
were received before the green ones.
We’ll zoom-in to this area in the next slide.

(1) NetData has made these
packets green to tell us that
they were “overtaken” on the
way to the server.

46

of 67

C to H Flow – Zoomed-In Further

TCP/IP Protocol Performance © Phil Storey

(2) In response to 5 such SACKs, the client
begins to retransmit the “missing” data.

(1) The first SACK(s) to arrive from
the server tell the client that 92 KB
(68 packets) didn’t arrive.

(3) But “normal” ACKs for the “missing” data
begin to arrive just 0.2 ms later. These can
only be ACKs to the original packets (which
weren’t “missing” but just arrived late).

(4) Just 1.2 ms after the first SACK, we receive ACKs to
the whole set of original packets. None were “missing”
at all - but were late. However, dozens of packets were
(and continue to be) retransmitted unnecessarily.

47

of 67

H to C - Full Flow (24 Seconds)

TCP/IP Protocol Performance © Phil Storey

(3) The client’s Receive Window keeps pace,
staying about twice as large as the server’s
Transmit Window – but is quite erratic.

(2) The linear ramp-up “sawtooths” many times
and only achieves a maximum of 565 KB before
the file transfer completes. Here it drops from
416 to 54 packets (3 “halvings”).

(1) “Slow Start” ramps up to 107 KB but then something
happens to cause throughput to reduce. The server also
goes into “Congestion Avoidance” mode, causing the
subsequent ramp-up to become linear.

48

of 67

H to C Flow – End of Slow Start

TCP/IP Protocol Performance © Phil Storey

(2) Similar “retransmissions” occur here,
here and here, creating the Transmit
Window “sawtooth” pattern many times.

(1) Something happens to halt
the server’s “Slow Start” ramp
up, cause throughput to reduce
and put the server into
“Congestion Avoidance” mode
(the subsequent ramp-up
becomes linear).

49

of 67

H to C Flow – Zoomed-In Further

TCP/IP Protocol Performance © Phil Storey

(2) However, unnecessary retransmissions”
occur, at the same time that the server
halves its Transmit Window. They arrive in
just less than a full RTT.

(1) The burst of 79 packets is
received normally at the client,
they are all in the correct order.

(3) The client sends D-SACKs in response to
the server’s unnecessary retransmissions.

50

of 67

H to C – Later in Flow

TCP/IP Protocol Performance © Phil Storey

(1) More unnecessary retransmissions, spread across two
round trips. The server halves its Transmit Window many
times – from 250 to 8 packets. If only we could what was
happening on the other side of the local ASA firewall?

(2) The client again sends D-SACKs in response
to the server’s unnecessary retransmissions.

51

of 67

D-SACKs trigger more unnecessarily retransmitted packets from the NetApp

Packets from the NetApp arrive at the ASA “Out of Order”

User, City-A Data Centre, City-B

WAN

1Gbps

User PC
(Windows)

NetApp
File ServerWAN

Router

WAN
Router

C
is

co
 A

SA

P
al

o
 A

lt
o

 F
W

PC-to-NetApp “Root Cause”

LANLAN LANLAN

10Gbps1Gbps1Gbps

1

Minimum RTT = 23.3 ms

TCP/IP Protocol Performance © Phil Storey

Packets are going Out of Order somewhere between
the local Cisco ASA firewall and the NetApp Filer

Root Cause: Out of Order (OOO) packets are
triggering SACKs, which in turn trigger
unnecessary packet retransmissions.

Due to the retransmissions, the connection
goes into “Congestion Avoidance Mode” where
the sender halves its Transmit Window (often
multiple times) and then ramps it back up in a
linear manner.

We can also determine that the OOO events
occur on the WAN side of the local ASA firewall.

The OOO events occur more often during the
“H to C” file transfers, that is, when the large
data flow is from the NetApp to the PC.

ASA buffers them and issues SACKs back to the NetApp

The original “missing” packets arrive at the ASA “Late”

ASA releases all the buffered and “late” packets in the correct order

Client ACKs all the received data

NetApp unnecessarily retransmits packets (responding to ASA’s SACKs), ASA sends them through.

Client sends D-SACKs due to the duplicated packets

52

of 67

User, City-A Data Centre, City-B

WAN

1Gbps

NetApp
File ServerWAN

Router

WAN
Router

C
is

co
 A

SA

P
al

o
 A

lt
o

 F
W

PC-to-NetApp – Subsequent Testing

LANLAN LANLAN

10Gbps1Gbps1Gbps

Minimum RTT = 22.5 ms

TCP/IP Protocol Performance © Phil Storey

Therefore, the packets must be
going Out of Order somewhere
between the local Cisco ASA firewall
and the local WAN router!!

More Tests: Laptops were taken to
different sites and connected directly to the
remote office WAN routers.

The same “C to H” and “H to C” file transfers
to/from the NetApp were performed.

The next slides plot the flows achieved
during these tests.

No OOO events were seen during these tests
and throughput both ways was as good as it
could be.

User PC
(Windows)

2

53

of 67

“H to C” & “C to H” – Clean, Full Flows – 2.5 Secs

TCP/IP Protocol Performance © Phil Storey

Transmit Windows (and throughput) are
more “rectangular” and constant.

54

of 67

“C to H” – Capture Artefacts

TCP/IP Protocol Performance © Phil Storey

Some things seem “odd” here? These are the “artefacts” of running the packet capture inside a PC or server. We are seeing the “packets” as they pass between the

TCP layer to the IP layer inside the machine. It is IP’s job to chop the data into the MSS sized packets that end up on the wire. Data can flow internally from TCP to IP

much faster than the wire speed. At this stage in the flow, the transmit window is just being “topped up” 1 MB at a time.

Lastly, if IP has 8 MB of data waiting in its Transmit Buffer waiting to get out on the 1 Gb/s wire, it will take 66ms for the whole 8 MB to leave the local machine.

Throughput of 8 Gb/s?

RTT of 66 ms?

64 KB packet?
“Stacks” are ~1 MB and

only 9ms apart?

55

of 67

“H to C” – Same Timeframe

TCP/IP Protocol Performance © Phil Storey

In the flow from the server, we see all the “packets” as they have arrived from the wire.

The timeframe here is about the same as the last slide (~36 ms) and we same about the same data volume in the period (~4 MB) but it looks much smoother because

each vertical “step” is now just 1360 bytes. The server’s Transmit Window of 2.5 MB is enough to keep the 1 GB * 23 ms path full.

Throughput is the
expected 1 Gb/s

1360 byte packet
“Steps” are 1360 bytes
and very close together.

56

of 67

“H to C” & “C to H” – One Location – 75/90 Secs?

TCP/IP Protocol Performance © Phil Storey

Why this period of
extra slowness?

(1) These flows were
“surprisingly” much slower – due
to Receive Windows of just 64 KB.
TCP Window Scaling was disabled,
even though the test laptops were
supposedly identical!

57

of 67

“C to H” – Zoom-in to Extra Slow Period

TCP/IP Protocol Performance © Phil Storey

For some reason, we went through a period
where the RTT got longer and longer, dramatically
slowing the throughput down to 5 Mbps, before
reverting to the normal 23+ ms.

58

of 67

TCP/IP Protocol Terminology

Nearly All Done?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”

“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”

“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (OOO)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 59

of 67

SMB2 Transactions

TCP/IP Protocol Performance © Phil Storey

The following slides show the transaction Performance Charts for both the
“C to H” and “H to C” file transfer tests.

The timing detail of each SMB2 transaction is displayed.

The reason for the different “SRT” times from Wireshark will be explained.
We’ll see that the NetApp Filer is not at fault in any way.

Do we have time to discuss them?

60

of 67

“C to H” - SMB2 Transactions

TCP/IP Protocol Performance © Phil Storey

Each SMB2 “Write” sends a 64 KB block of data. As
the available TCP throughput ramps up, the time to
send each 64 KB block (LHS scale) decreases.

As the available TCP throughput ramps up, the
number of 64 KB blocks able to be transmitted at
once (per RTT) increases.
The RHS scale is “Transactions in Progress”.

61

of 67

Understanding Performance Chart Transaction Symbols

More Complex TCP Selective ACKs 62© Philip Storey

First packet of server responseFirst packet of client request.

Last packet of client request.
Last packet of server response

Server TimeRequest Duration Response Duration

NetData measures and reproduces individual application layer transactions. The “Performance Chart” plots each transaction as a horizontal line that

represents the overall transaction time. Symbols within the line indicate timings of sub-components of the transaction. The symbol colour represents

the server (or client) and symbol shape represents the transaction type.

The X-axis is time-of-day and the Y-axis is transaction time. A transaction is plotted at a height that represents the overall transaction time (full length

of the horizontal line).

The green, yellow and blue colours are used consistently whenever these times are represented on the various charts.

of 67

Understanding Performance Chart Transaction Symbols

TCP/IP Protocol Performance © Phil Storey

First packet of server responseSingle packet client request Last packet of server response

Server Time

Response Duration

Transactions that have been affected by a “network abnormality” get a pink square around the symbol.

If the server response is also small (or relatively fast), then the coloured symbol will be at the very end of the line.

In this case, the whole transaction duration appears to be “Server Time”.

Server Time

Extremely common.

The length of the horizontal line before the coloured symbol represents “Server Time”.

63

of 67

“H to C” - SMB2 Transactions

TCP/IP Protocol Performance © Phil Storey

When receiving, the client asks for ~125
blocks of 64 KB at a time. The server must
queue these requests and handle them
sequentially, giving the appearance of long
“Server” (Wireshark “SRT”) times .

64

There are 3,227
transactions on
this chart.

of 67

“H to C” & “C to H” – Clean SMB2 Transactions

TCP/IP Protocol Performance © Phil Storey 65

When the flows are
optimum, there’s a co-
incidental symmetry of
reading and writing.

There are 6,452
transactions on
this chart.

of 67

Receive Window Closures

TCP/IP Protocol Performance © Phil Storey

The following slide is just a nice example of a file transfer flow that contains several Receive
Window “closures” (or what Wireshark calls “Zero Window” events).

The flow was captured at the receiving end of a low speed WAN that had WAN Accelerators
deployed at each end.

The throughput being achieved by the WAN link was only about half of the expected capability.

The vendor who managed the WAN link and WAN Accelerator devices was claiming that the
receiver’s many window closures were the cause of the poor throughput performance (the WAN
Accelerators logged such things). Therefore, they wouldn’t investigate the poor WAN throughput
until we made the window closures go away.

Were they correct?

66

of 67

Receive Window Closed/Opened

TCP/IP Protocol Performance © Phil Storey

Receiver drops it Receive

Window to less than one MSS.

The flow stops, but catches up

when the window is re-opened.

Window constantly

open here.

In this example, the Receive Window is closed (dropped to less than one MSS size), the sender stops transmitting but “catches up” once the Receive Window is re-

opened (to 64 KB). The window closures do not, therefore, affect the overall file transfer throughput or time. A local WAN Accelerator did not pass the window closures

through to the sending side – but rather, let packets continue to flow over the low speed WAN, to be buffered in the local WAN accelerator and released at local LAN

speed when the Receive Window was re-opened. Thus, the overall time for the file transfer (throughput) was not affected by the window closures.

Window is filled during the “catch

up” times but not otherwise.

67

of 67

TCP/IP Protocol Terminology

All Done!!

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”

“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”

“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (OOO)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 68

of 67

Phil Storey
Phil@NetworkDetective.com.au

www.NetworkDetective.com.au

au.linkedin.com/in/philipstorey3

@PhilStorey24

www.youtube.com/c/NetworkDetective

ask.wireshark.org: @philst

TCP/IP Protocol Performance © Phil Storey 69

mailto:Phil@NetworkDetective.com.au
http://www.networkdetective.com.au/
https://au.linkedin.com/in/philipstorey3
https://twitter.com/PhilStorey24
http://www.youtube.com/c/NetworkDetective
https://ask.wireshark.org/users/26122/philst

