TCP/IP Protocols

Transmission Control Protocol / Internet Protocol

The purpose of this presentation is to show that the TCP/IP protocols, and the way that higher layer
applications make use of them, can have significant impacts on data flow throughput.

)

Often, when “the application is slow”, the correct fix is to modify the application and/or the TCP
settings. This fact is not usually readily apparent.

We discuss the behaviours of TCP/IP packet flows under various circumstances and define a variety
of protocol terms. We also compare the original TCP and “new” TCP performance differences.

The effects of packet losses —and how TCP/IP handles them - will also be discussed and presented.
Small packet losses can have an un-expectedly large impact on throughput.

'drhe NetData Pro packet analysis software tool is used to display the transaction and packet flow
ata.

Phil Storey

Phil@NetworkDetective.com.au

Real World Performance Problem

A question appeared on the site “Ask Wireshark”. ask.wireshark.org/questions/55972 /slow-writes-even-slower-reads-spanning-wan-to-netapp?page=18focusedAnswerld =58542#59
https://ask.wireshark.org/questions/55972/slow-writes-even-
slower-reads-spanning-wan-to-netapp WI RES HARK
. . TasHUsersHEa esHUnanswered]
The problem had been occurring for a long time, happened the m [g dg

same way every time and nobody knew what was the cause. Search

@ Questions OTags O Users

slow writes, even slower reads spanning WAN to Netapp

@ WinT workstation -» LAN -> ASA -> Cisco ASR -> DMVPN -= ASR -= Palo Alto -» Nexus -= NetApp

2 \We are experiencing the symptoms described in the title. This is not new, it predates me, and it happens at multiple
50/ | spoke sites in our DMVPM. Each vendor just seems to point the finger at the other with no real data reinforcing their point.
Cisco has cleared any real issues at the hardware level. y
M Wireshark 10 Graphs: 20160422-201933074_CAP_GTRT_Tun0_1st(1).pcap =, 68, X
The symptom was that an SMB file transfer of the exact same file, _—zcm
between the same user PC and the same NetApp file share R
server, always took longer to download than to upload. T ‘ l -
R
The Wireshark throughput charts showed that the throughput of R 1000
the download (SMB Read) versus the upload (SMB Write) varied =
significantly and formed “sawtooth” patterns. -
[s S E—— —— —— ——— R
0.0s 205 4.0s 6.0s
4 L1 3

TCP/IP Protocol Performance © Phil Storey 2

https://ask.wireshark.org/questions/55972/slow-writes-even-slower-reads-spanning-wan-to-netapp

Wireshark Experts Also Looked At It

blog packet-foo.com/2016/10/trace-file-case-files-smb2-performance

Wireshark experts in Europe blogged about it.

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

PACKET-FOO.COM

4 N
Note the multiple sawtooth pattern in the “H-to-C” case (SMB Read) with the 200 MB file taking ANALYZING NETWORK PACKETS SINCE 2003
24 seconds. The “C-to-H” case had only one big sawtooth and took just 13 seconds to transfer

the same 200 MB file.
\ J Wireshark I0 Graphs: H_to_C_200MB

‘ Wireshark 10 Graphs: C_to_H_200MEB ’
- | J/
13 Seconds Pl /
LA-10 | : L/.'vf
: 7 M
o ' ' -

24 Seconds

=

= [

% LIF 10

N aans |- 1 1

| 12 18 30 3
4 iu:ll -
L) L . i L i - m : - .
’ e ; S = @ @ Trace File Case Files: SMB2 Performance

ok o et it 40 (LK = il

Hame D play filber Colo Style ¥ Aaip W Pl Smeothing s

| Credis Grasted sl . Line SLATY Feeddy smbloredi. MHone
L | Credis Begquemed il bpeadae SUINY Feelf) smbd.credl. Mone
Lo TP anty ficp Line Biks Hune -

ol bl Moume () diags L) zoams | L] T of oy L] Log scale f— We had an interesting question regarding SMB2 performance on the Wireshark Q&A

forum recently. Upon request the person asking the question was able to add a

couple of trace files (="capture” files). The question and a link to the traces can be

TCP/IP Protocol Performance © Phil Storey

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

Geometry Refresher

At 20 KB/s, it would take just 2 seconds to transfer 40 KB of data (green).

To transfer the same 40 KB with a linearly increasing throughput rate would take twice as long (yellow). Assuming that we eventually ramp up to the full 20 KB/s.

If we only ever ramp-up to 10 KB/s, and form a sawtooth pattern (red), the overall time doubles yet again.

8 Seconds

2 Seconds 4 Seconds .

KB Per Second

v

6 7 8 9 10

1 2 3 4 5

TCP/IP Protocol Performance © Phil Storey

Time
4

of 67

TCP/IP Protocol “Education”

Before we can run through the live packet analysis, which is fairly complex, we first
need to run through some underlying details of:

- How TCP/IP works.
- How to understand the charts and graphs that NetData produces.

I've tried to “kill two birds with one stone” by combining the two lessons.

This presentation can be downloaded (as a PDF) from:
http://www.networkdetective.com.au/downloads

http://www.networkdetective.com.au/PDFs/TCP-Performance.pdf

CP/IP Protocol Terminology

These terms are described in this presentation.

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”
“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”
“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (O00)”

“Window Closure” aka “Zero Window”

Good Flow — Only “Normal” ACKs Needed

® All example packets have TCP payload of 1,000 bytes
In this time period, 10 data packets have been received and fully
acknowledged. Only 5 ACK packets were transmitted.
12 The slope of the packets gives us a visual indication of the
11 bandwidth (as long as we understand the x-axis scale).
10 |
9 |
s 8 | ’
o
— 7
= |
o 6 |
C
i‘é 5
8 4 Bandwidth 1 Bit (ms) 1 Byte (ms) |Packet Size |1 Packet (ms) |10 Packets (ms)
8—) | 192|Kb/s 0.00521 0.04167 1000 41.667 416.667
= 3 1|{Mb/s 0.001 0.008 1000 8 80
| 10/Mb/s 0.0001 0.0008 1000 0.8 8
2 | 100|Mb/s 0.00001 0.00008 1000 0.08 0.8
1 500|Mb/s 0.000002 0.000016 1000 0.016 0.16
| 1/Gb/s 0.000001 0.000008 1000 0.008 0.08
0 - 10|Gb/s 0.0000001 0.000001 1000 0.0008 0.008
These figures ignore TCP/IP, Ethernet and other overheads.
TCP/IP Protocol Performance © Phil Storey 8

Good Flow — “In Flight” Data

Data that has been transmitted, but for which ACKs

In this time period, we say that

10 K “bytes in flight”.

there are 10 “packets in flight” or

have not yet been received, is termed, “in flight”.

RFC 5681

20
|
18 I|
16 |
I|
14
|

12 I

10 |

TCP Sequence (x 1,000)

https://tools.ietf.org/html/rfc5681
Uses the term, “Flight Size”.

As ACKs are received, the “in flight” data
reduces. It would be zero here.

Artistic Licence:
Receiver ACKs have now been shifted right by 1 x Round Trip Time (RTT).
This stylistically matches sender transmitted data packets with the corresponding ACKs — as seen at the sender.

v

TCP/IP Protocol Performance

Time

© Phil Storey 9

https://tools.ietf.org/html/rfc5681

Bad Flow — Only “Normal” ACKs Allowed

Red means
“follows a gap”

12

11

10

TCP Sequence (x 1,000)

“Fast Retransmission”:
A packet retransmitted in
response to 3 Dup-ACKs

Green means
“fills a gap”

Count of
“Dup-ACKs”

All example packets have TCP payload of 1,000 bytes

\ 4

TCP/IP Protocol Performance

© Phil Storey

Time
11

Bad Flow — Only “Normal” ACKs Allowed.
‘. One Round Trip Time Later

On receipt of our first ACK, the sender knows that we have received the first packet.

The 4 x Dup-ACKs indicate that Packet #2 didn’t arrive — but at least 4 (out of the remaining 8) other
packets must have arrived (each triggering a Dup-ACK).

However, the sender can’t tell how many or which of the last 8 packets went missing.

20
To avoid unnecessary retransmissions, the sender retransmits just the missing Packet #2 data — and may
18 send more data too. 2 new data packets are shown here.
g 16 We will receive these 3 new packets one RTT after the first packet burst.
o
i 14 .
‘; 1 Our response will be to send a normal ACK for Packet #2, followed by 2 x Dup-ACKs — one each for those
E 12 | 2 new data packets.
CIC) 10 I
s> 10 | I Our first ACK is known as a “Partial ACK”, because we have still not yet acknowledged all outstanding
o I| data.
R
[a
= I
4 I
2 | p 2
. | N

\ 4

Time
TCP/IP Protocol Performance © Phil Storey 12

Bad Flow — Only “Normal” ACKs Allowed.
u Two Round Trip Times Later

On receipt of our “partial” normal ACK, the sender knows that we’ve now received the Packet #2 data.

The 2 x Dup-ACKs now indicate that Packet #3 had never arrived, so the sender retransmits the Packet
#3 data (in that new green packet).

Again, there can be fresh data — so 2 new data packets are shown here.

50 We will receive these new packets after another RTT.
Our ACK response, shown here, will be to send a normal ACK all the way up to 4,000.

18 . -
/ \ We’ve had the Packet #4 data since the beginning and the newly received green Packet #3 data finishes

16 filling the first original “gap”.

14 | However, we still have the original second gap, so we can only send more Dup-ACKs at the 4,000 level.

i I """""""""""

10 |

TCP Sequence (x 1,000)

Time

TCP/IP Protocol Performance © Phil Storey 13

\ 4

Bad Flow — Only “Normal” ACKs Allowed.
u Three Lost Packets Cost Us Three Round Trip Times

On receipt of our normal ACK, plus the two Dup-ACKs, the sender knows that
we’re still only up to 4,000.

The sender retransmits the Packet #5 data (in yet another new green packet).

Just for this example, we continue with 2 packets of fresh data.

20
18 / \
12
©F LB | B I
8 12 |
R 2 I """"""""""""""""""
> 1
= |
Q]2 | g
% 10 |I We’ve had the Packet #6 data since the beginning and the newly received
S 10 |l green Packet #5 data finishes filling the second original “gap”.
3 g II
S5 | We have now received a total of 16 packets, containing 16 KB of
L e | contiguous data.
T S
] | P Our ACK response will be to send a normal ACK all the way up to 16,000.
2 | v 2 We’re now “fully ACKed” and back to normal.

0 | _ 1> k /

\ 4

Time
TCP/IP Protocol Performance © Phil Storey 14

If There Was Only 10 KB.

If there were only 10 KB to be transferred, the result here is that it has taken 4 RTTs to transmit what should have been done in one round trip.

Our effective throughput has been divided by four.

Main message: Packet losses cost us round trip times.

20

18

16

14

12

10 |

TCP Sequence (x 1,000)

\ 4

TCP/IP Protocol Performance © Phil Storey

Time
15

20

18

16

14

12

10

12

10

TCP Sequence (x 1,000)

Delayed ACK and Retransmission Timeout (RTO)

Imagine that the lost packet was the 10 of our set of 10. From the receiver’s point of view, we have received just 9 packets. The first 8 packets
have been acknowledged immediately but not Packet #9, because we only immediately ACK every two packets. We wait for another packet to
arrive. However, we can’t wait forever and we will issue an ACK after a delay (usually 200 ms). This kind of ACK is called a “Delayed ACK”.

At 200 ms, these can be very costly in terms of time.
As far as the receiver knows, all packets are fully acknowledged. However, the sender is still waiting for an ACK to Packet #10. It will only wait for
whatever its “Retransmission Timeout” value is set to. This should be longer that the Delayed ACK time and is commonly 300 ms, 500 ms or even

a full second. It is calculated dynamically based on observed RTTs.

These can be even more costly in time, especially if it occurs regularly (or if single packet server responses get lost).

Retransmission Timeout (RTO)

A
v

9 < Delayed ACK?? L~
""""""""""" (N < 200 ms Delayed ACK . I '|—
I | |
I
I
II
| The receiver sends an ACK to the single packet after a The sender sends a retransmission after its RTO
I delay of 200 ms. It thinks everything is done. expires. Should be longer than the Delayed ACK time.
I
I
Time

TCP/IP Protocol Performance © Phil Storey

16

TCP “Slow Start”

A
In real life, the first 10 packets to be transferred in a brand new TCP connection would actually look like this. TCP always conducts a “trial” within a new
connection by sending one (sometime more) packet first, then ramping up exponentially by doubling the number of packets per round trip.
The initial 3-way handshake is also shown here, as well as the 3-way “Final” connection termination.
The result here is that (if it had to be done on a brand new TCP connection) it would take 5 RTTs to transmit 10 packets worth of data plus 1 more RTT to
terminate the connection.
Our effective throughput would perhaps be only a fifth or sixth of what we might expect.
20
18 Main message: Smallfile transfers over “new” TCP connections cost us several RTTs.
8 16
Q
— 14
=
Y 12
c Final
@ 2
S 10
= |
n 4
o 8 I
O I
= 6
4 2 |II
) 1 |'
I
) ¢ ¥, Syn-ACK — | <> P
Syn €@ A Final ACK
M Request data
1 2 3 4 5 6 7 8 Time

TCP/IP Protocol Performance © Phil Storey

17

CP/IP Protocol Terminology

Where are we up to?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”
“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”
“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (O00)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey

18

Buckets and Barrels

At the receiver: The buckets fill up a “Receive Barrel” At the sender: TCP receives large blocks of data from the
which is of a size determined by TCP/IP and can be sending application. It assigns sequence numbers and
changed at any time. breaks the data into smaller buckets (segments). It is IP’s
The application removes data from the Receive Barrel at job to put the buckets onto the conveyor but TCP’s job to
its own pace. track sequence numbers.

T N ey TP P TCP App AT

e
w @ &
B = UE N g

Receive Transmit Buffer
Barrel Barrel Barrels

—1 D
— 64KB
- Spare Barrels

TCP/IP Protocol Performance

© Phil Storey 19

Buckets and Barrels

The sender cannot put too many buckets onto the conveyor at once, because the Receive Barrel cannot be allowed to overflow. The
receiver can vary the size and informs the sender of the current size of the Receive Barrel with every ACK (or data) bucket.
TCP can acknowledge the bucket data even though the application has not yet taken it.

More buckets can be placed on the belt as ACK buckets arrive back from the receiver. Buckets that have been placed on the belt but
which have not yet been ACKed are called “In Flight”.

The sender can choose to send fewer — but it must never have more “in flight” data than the allowed Receive Barrel size.

T e TP P TCP App T
vé .Q O p—

v\
o -
~— . U g @
Receive Transmit Buffer
Barrel Barrel Barrels

— C
— 64KB
- Spare Barrels

TCP/IP Protocol Performance © Phil Storey 20

Buckets and Barrels

If the receiver’s application stops “emptying” the receive buffers. The receiver’s TCP will begin to reduce the advertised Receive Barrel
size and, if necessary, advertise a “Zero Barrel” size — which we term, “Closing the Receive Window”.

When the receiver does this, it needs to make sure that it still has enough Receive Barrel capacity to catch the buckets already “in flight”.

If the receiving application is “busy” or just If you run a packet capture on a PC or
can’t keep up with the flow. It stops or slows server, the data is captured here.
taking data out of TCP’s receive buffer. We’ll see some “artefacts” of this later.

T ey TP P | TCP App AT

K ‘— — -
g ©

>
— | Fop L
Receive Transmit Buffer

Barrel Barrels

1460
1460

ACK
ACK

Barrel

64KB w Spare Barrels
TCP/IP Protocol Performa © Phil Storey 21

Optimum Throughput

Optimum data throughput is achieved when the sender can keep the conveyor full.

Here we have 13 buckets on the way (13 x 1460 = 18,980) but
E. also 6 ACKs on the way back (which would represent 12 x 1460 =
17520) for a total of 25 buckets “in flight” (36,500 bytes).

1460

The receiver’s 64 KB “Receive Bucket” is more than enough to
handle this flow, in fact, would only ever be half full.

The receiver’s 32 KB “Receive Bucket” and longer,

faster belt mean that we have to stop after 22
O buckets (22 x 1460 = 32,120).
The sender has to wait for the ACKs before adding

more buckets to the belt.
The “Receive Bucket” will fill up, then empty, over
and over.

TCP/IP Protocol Performance © Phil Storey 22

64 KB in Milliseconds

Faster and longer networks mean that a 64 KB Receive Window is not enough these days.
Today we have “Long, Fat Networks (LFNs)”. Long = high RTT ; Fat = high bandwidth.

44 x

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

=

460 = 64,240

4
3

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

RTT = Length x 2

Time to Transmit 64 KB for Various Bandwidths*

Bandwidth 1Bit (ms)| 1 Byte (ms)| Packet Size| 1 Packet (ms)| 44 Packets (ms)
192(Kb/s 0.00521 0.04167 1460 60.833 2676.667

1Mb/s 0.001 0.008 1460 11.68 513.92

10|Mb/s 0.0001 0.0008 1460 1.168 51.392
100/Mb/s 0.00001 0.00008 1460 0.1168 5.1392
500|Mb/s 0.000002 0.000016 1460 0.02336 1.02784

1/Gb/s 0.000001 0.000008 1460 0.01168 0.51392

10|Gb/s 0.0000001 0.000001 1460 0.001168 0.051392

*This ignores TCP/IP, Ethernet and other overheads.

TCP/IP Protocol Performance © Phil Storey

\ 4

Sample Round Trip Times Effective Throughput
Source Destination RTT (ms)|Bytes per RT| Throughput (b/s) AKA
Sydney |Sydney (DWDM) 1 64 KB 524,288,000 500 Mb/s

2 64 KB 262,144,000 250 Mb/s
Sydney [Sydney (Cloud) 5 64 KB 104,857,600 100 Mb/s
10 64 KB 52,428,800| 50 Mb/s
Sydney |Melbourne 15 64 KB 34,952,533| 33Mb/s
20 64 KB 26,214,4000 25Mb/s
Sydney |Perth 50 64 KB 10,485,760, 10 Mb/s
100 64 KB 5,242,880 5Mb/s
Sydney Los Angeles 200 64 KB 2,621,440 2.5Mb/s
Sydney |New York 250 64 KB 2,097,152 2Mb/s
500 64 KB 1,048,576 1Mb/s

23

64 KB Per RTT(=23ms) [0.5 secs = 1.2 MB]

Here is what a 64 KB Receive Window on a 1 GB/s network with RTT=23ms looks like. We get an effective throughput just over 20 Mb/s.
There are 48 packets per RTT because the MSS=1360. 48 x 1360 = 65,280. In this ~half second time period we transfer 1.2 MB.

20 Mb/s is only 2.2% of the theoretical maximum throughput of ~900 Mb/s (allowing for overheads in the 1 Gb/s link).

__ Sgnver window upper Data Sequence, Window Size & Throughput vs Time
1200 12 segments in window SMB2/TCP connection 140589 NETTEST (clt) -= 1.1.1.2 (svr) 300
1) 1 normal data packet 48
/ ack packet =
— window lower edge 48
SErVer receive window —ﬂ'
1000 4 client transmit window =
— client receive window 45 _ﬂ [L 250
12 maximum-size segments
[=erver transmit window 48 l J
— - client Kbps 4z —r-'[|'
@ ang zerver Kbps
=z ' 4 _ﬂ |I
e
2 48 3 [B L200 ,,
p 4 —h‘ Packet seq D96: data 4;2_‘
o J IP ID: 21528 A | =
= 600 4 —] ¥
Protocol: SMBZTCP seq 3,656 466 062
= 42 | |I Time: 01:37:50.3587 150 B
m 45 J Frame: m1 p-1 01:37:50.3589 255 ' i
L4004 4z — Length: 1418 b',-'t&_njdata 1360) =
- . j— Connection: 14058%: 1.1.1.2-=1.122 =
N =
' ; ; r'—'i_“j 100 =
200 . 1
i — : — i B i i f r | | [-
Client receive window |
size: 65,280 bytes |
in packet seq 53: data 65,280 bytes (48.0 segments) in server transmit window, in ﬂight|
— 1 -4 4 S L4 4 T [1 1T 1T 1 o
01:37:50.05 01:37:50.1 01:37:50.15 01:37:50.2 01:37:50.25 01:37:50.3 01:37:50.35 01:37:504 01:37:50.45 01:37:505
MetChart of 21:21 230317 (0208L2LGTHRouter-OR Router-2) Tuesday 0710217

TCP/IP Protocol Performance © Phil Storey 24

r30

25

T T
—& P
n L=

Data Rate Mhps

T
—h
=

2.5 MB Per RTT(=23ms) [0.5

secs = 25 MB]

Here is what a 2.5 MB Transmit Window on a 1 GB/s network with RTT=23ms looks like.
We get an effective throughput of just under 900 Mb/s. We manage to transfer 25 MB in just under half a second!
There are 1800+ packets per RTT (2.5 MB).

This is 100% of the theoretical maximum throughput of a 1 Gb/s link.

Data Sequence, Window Size & Throughput v

SMB2TCP connection 140585 METTEST (clt) == 1.1.1.2 (svr)

s Time

25 server window upper 12
—— client window upper
2 segments in window
1 normal data packet
ack packet
— window lower edge
server receive window 10
204 client transmit window
—— client receive window
12 maximum-zize segments
[server transmit window
— - client Kbps
@ server Kbps F8
. -]
=15 =
= =
] Client receive window advanced @
= upper edge to 1,708,965 735 by 1,803,472 bytes o] c%
@ in packet zeq 2771: non-data Ack =
= |
B 101 Packet zeq 201: data §
:§ IP 1D 935 A ;%
Protocol: SMB2TCP seq 1,702,105,032
Time: 01:30:12.58592
Frame: m1 p-1 01:30:12.5833 z255
5 Round-trip: 0.1 ms
i Length: 1418 bytes|(data 1350)
Connection: 140585 1.1 121122
s 10 18 23 2w s 48
ol 1 11 ; 5 10 181 28 25 - 44‘ £4 = 58 6 §_ 33 2.2 0
e L [R I T T " = T = | — = L L L I — " r
0130124 01:30:12.45 0130125 01:30:12.55 0130126 01:30:12.65 0130127 01301275 0130128 01:3012.85 0130128 01:30:12.95 01:30:13
MetDats Chart of 16:10 3000317 (02061 2L GTNRouter-ORRouter) Tuesday 07/02M17
TCP/IP Protocol Performance © Phil Storey 25

-300

-500

-400

-900

- 700

FG00

Data Rate Mhbps

-300

-200

- 100

Bandwidth Delay Product (BDP)

The question about throughput can be phrased differently: “Given a particular bandwidth and RTT,”
- “How big does the Receive Window need to be in order to fill up the path?” or
- “What Receive Window will enable the maximum (i.e., constant) throughput?”

?? x MSS
§§§§§§§§F§§l§§§§§§§§§§§§§§§§§§§l§§§§§8§§§§§§§§§%8§l§§§§§§§§§§§§§§8§8§1§8§§8§8§8§88§8§8§8§§§§§§§
(O - - (O
- RTT = Length x 2
BDP? BDP = Bandwidth X RTT (bits/sec X sec = bits).
[RTT, being “round trip” time, already includes both directions].
10Mb/s X 10ms =
10Kb/s X 10 sec = 100 Kb (=12.5 KB).
BDP (Bytes) for Various Bandwidth/RTT Combinations
RTT (ms)
Bandwidth 1 2 5 10 15 20 50 100 200 250 500
192 Kb/s 24 48 120 240 360 480 1,200 2,400 4,800 6,000 12,000
1 Mb/s 125 250 625 1,250‘/ 1,875 2,500 6,250 12,500 25,000 31,250 62,500
10 Mb/s 1,250 2,500 6,250 12,500 18,750 25,000 62,500 125,000 250,000 312,500 625,000
100 Mb/s 12,500 25,000, 62,500 125,000 187,500] 250,000] 625,000 1,250,000, 2,500,000 3,125,000, 6,250,000
500 Mb/s 62,500 125,000[312,500 625,000 937,500, 1,250,000 3,125,000 6,250,000, 12,500,000 15,625,000, 31,250,000
1Gb/s | 125,000 250,000 625,000 1,250,000 1,875,000 2,500,000, 6,250,000 12,500,000 25,000,000, 31,250,000 62,500,000
10Gb/s | 1,250,000 2,500,000/ 6,250,000 12,500,000/ 18,750,000/ 25,000,000 62,500,000, 125,000,000 250,000,000 312,500,000/ 625,000,000

TCP/IP Protocol Performance

© Phil Storey

Bandwidth Delay Product (BDP)

Bandwidth-Delay Product refers to the product of a data link's capacity (in bits per second)
and its round-trip delay time (in seconds). The result is an amount of data, measured in bits
(or bytes), that is equivalent to the maximum amount of data on the network circuit at any
given time, i.e., “in flight” data that has been transmitted but not yet acknowledged.

A network with a large bandwidth-delay product is commonly known as a long fat network
(shortened to LFN and often pronounced "elephen"). As defined in RFC 1072, a network is
considered an LFN if its bandwidth-delay product is significantly larger than 10~ bits (12500
bytes).

Ultra-high speed LANs may fall into this category, where protocol tuning is critical for
achieving peak throughput, on account of their extremely high bandwidth, even though their
delay is not great.

An important example of a system where the bandwidth-delay product is large is that of GEO
satellite connections, where end-to-end delivery time is very high and link throughput may
also be high. The high end-to-end delivery time makes life difficult for stop-and-wait protocols
and applications that assume rapid end-to-end response.

Sourced from:
https://en.wikipedia.org/wiki/Bandwidth-delay product

https://en.wikipedia.org/wiki/Round-trip_delay_time
https://tools.ietf.org/html/rfc1072
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

CP/IP Protocol History

Modern version(s) of TCP/IP have features that improve performance over the original “old” TCP/IP

These new features became necessary as bandwidths increased and exposed the limitations of the original protocol designs

|H

(64 KB Receive Window and “normal” Acknowledgements).

The most important update in this area was:

RFC 1072 October 1988 https://tools.ietf.org/html/rfc1072
RFC 1323 May 1992 https://tools.ietf.org/html/rfc1323
RFC 7323 September 2014 https://tools.ietf.org/html/rfc7323

The two most important of the “new” features are:
- Window Scaling
- Selective ACKs (SACKs)

These features weren’t commonly implemented until well into the 2000’s! [Linux (2.6.8) - Aug 2004 ; Windows Vista - 2008]

Bear in mind that the “new” features had to work with “old” TCP implementations that knew nothing about them.

TCP/IP Protocol Performance © Phil Storey

28

https://tools.ietf.org/html/rfc1072
https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc7323

Selective Acknowledgement (SACK)

Our throughput is improved over the “old” normal ACKs.

Note that SACKSs also count as Dup-ACKs.

A more efficient way to handle packet losses is with the “newer” Selective Acknowledgement method. SACKs tell the sender exactly which data was
received and which was not received. The sender can respond by retransmitting the exact missing data all in one go.

In this same example as earlier, our 3 lost packets now only cost us one extra round trip for the retransmissions.

20

18

Using SACKs, the receiver can specify the exact
missing data (three packet’s worth here).

16

14
12

10 | I """"""""""""""" [

TCP Sequence (x 1,000)

Without SACKs — 3 RTTs

TCP/IP Protocol Performance

© Phil Storey

Time
29

Selective Acknowledgement (NetData)

Observe that our payload sizes here are 1448 instead of the usual 1460 because TCP Timestamps are enabled.
The left y-axis measures bytes transferred (TCP Sequence Numbers) and the x-axis is time of day. This means that normal flows will work up from the bottom left to
the top right of the chart. Chart items related to the various TCP windows use the right y-axis.

Shapes, colours and position are used to present different packet types and sizes. TCP acknowledgements are displayed as window edge lines that will “step up” at
the time the ACKs are estimated to be received by the sender.

. . ; Here, SACKs “look
clent window upper Server Data Sequence & Window Size vs Time like” shaded areas
2 segments in window ' .
25| 1 normal data packet | HTTR/TCP connection 229889: 192 1658.1.3 I:I:l_t}—b G3.116.243.97 (svr) 70
1 data packet leaving gap .
data packet filing gap
ack packet
T selective ack 2 _
— window lower edge —l LR
20 4 " count of duplicate acks |
client receive window |
12 maximum-size segments
server data bytes in flight 8 -
w selectivehy acked STy |
g_‘ ﬁ lost in transit T —l Mi==ing (lost) data identified 50
= "; " 12 d t. - in packet seq 31: selective ack w
S inieny lds b=l 1,448 bytes (1.0 segments) =
P ID: 7850 ytes (1.0 segments) =
Timestamp: 2375817072 echo 1545575 i \ 40 i
L cC, { =}
_F‘rirnc_lllc!cul. EIETJT;PMZ? 2T4T368338 These small numbers Client receive window _E
I-'{uur;u:l—trip: 00ms count the Dup-ACKs size: k4l2lt,?[|4?t:$'.tesl - . U;
Length: 1518 bytes (data 1448) i —| I packe Seq [seecveac r30 &
Connection: 228889 63.116.243.97 -= 192 168.1.3 =
£2116.2438 _] £
5
7 F20
Client receive window]
size. 5,040 bytes §]11,584 bytes (8.0 segments) in server transmit window, in flight
in packetseg1:5yn -4 1 4 E ——— —_— ——— ———————]
, [t — 0
04:20:10.41 ' 04:20:10.43 04:20:10.45 ' 04:20:10.47 ' 04:20:10.49 ' 04:20:10.51 ' 04:20:10.53
MetDats Chart of 08:02 22/11/16 (TCP_SACK) Thursday 17/06/10

TCP/IP Protocol Performance © Phil Storey 30

CP/IP Protocol Headers

0 4 8 12 16 20 24 28 32
TCP Header l] I]
Offsets Octet 0 1 2 3 Version '”t‘jn”;‘h”ﬁfﬁ‘ Type Of Service (TOS) Total Length (TL)
Octet ®Bit | 0| 1| 2 3| 4| 5| 6| 7 8| 9/10|11 12|13 |14 15 16|17 (18|19 20 21 22|23 24 25|26 |27 28|29 |30 31 |der]i'ilﬁcati0n '.II".IFIags Fragment Offset
0] Source port Destination port e
Time To Live (TTL) Protocol " . Header Checksum
4 32 Sequence number - 1 300
8 64 Acknowledgment number (if ACK set) Source Ad.?.ré?'s
Reserved | [} Destination A'gdl";irlélss
12 96 Data offset Window Size w L
Doo s ¥ (] L% Y
— - Options - ------------------------- =
16 128 Checksum Urgent pointer (if URG set) " ", Padding
20 160 Options (if dafa offset = 5. Padded at the end with "0" bytes if necessary.) ('
T Data =
0 4 180 3
= e Dont | More
Ma In |nf0rmat|on . Precedence | Delay ?hr;':'t' :éj'ﬁ'; Reserved S:‘:,'Bd ':':Ift' ;fngt;
. . . _ k (DF} (MF)
- Smallest possible TCP+IP header size is 20+20=40 bytes. , o
= TCP can be |a rger (bUt then TCP payload m USt be red Uced)- Figure 86: Internet Protocol Version 4 (IPv4) Datagram Format
- Sequence numbe IS and ACK numbers are 32-b|ts eaCh. This diagram shows graphically the all-important IPv4 datagram format. The first 20 bytes are
the fixed IP header, followed by an optional Options section, and a variable-length Data area.
- Window size is 16-bits (0-65535 = max 64 KB). Note that the Type Of Service field is shown as originally defined in the IPv4 standard.

Sourced from:
https://en.wikipedia.org/wiki/Transmission Control Protocol
http://www.tcpipguide.com/free/t IPDatagramGeneralFormat.htm

TCP/IP Protocol Performance © Phil Storey 31

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm

CP Optional Header Fields

The length of this field is determined by the data offset field. Options have up to three fields: Option-Kind (1 byte), Option-Length (1 byte), Option-Data (variable). The Option-Kind field indicates the type of
option, and is the only field that is not optional. Depending on what kind of option we are dealing with, the next two fields may be set the Option-Length field indicates the total length of the option, and the
Option-Data field contains the value of the option, if applicable. For example, an Option-Kind byte of 0x01 indicates that this is a No-Op option used only for padding, and does not have an Option-Length
or Option-Data byte following it. An Option-Kind byte of 0 is the End Of Options option, and is also only one byte. An Option-Kind byte of 0x02 indicates that this is the Maximum Segment Size option, and
will be followed by a byte specifying the length of the MSS field (should be 0x04). This length is the total length of the given options field, including Option-Kind and Option-Length bytes. So while the MSS
value is typically expressed in two bytes, the length of the field will be 4 bytes (+2 bytes of kind and length). In short, an MSS option field with a value of 0x05B4 will show up as (0x02 0x04 0x05B4) in the
TCP options section.

Some options may only be sent when s¥x is set; they are indicated below as ™™ Option-Kind and standard lengths given as (Option-Kind,Option-Length).

« 0 (8 bits): End of options list
1 (8 bits): No operation (NOP, Padding) This may be used to align option fields on 32-bit boundaries for better performance.

[5¥H]

2.4 S5 (32 bits): Maximum segment size (see maximum segment size)
3.3.5 (24 bits): Window scale (see window scaling for details) =]

4.2 (16 bits): Selective Acknowledgement permitted. %! (See selective acknowledgments for details)"
5,N,BBBB,EEEE, .. (variable bits, N is either 10, 18, 26, or 34)- Selective ACKnowledgement (SACK)"' These first two bytes are followed by a list of 1-4 blocks being selectively acknowledged,
specified as 32-bit begin/end pointers.

« 8,10, TTTT,EEEE (80 bits)- Timestamp and echo of previous timestamp (see TCP timestamps for details)"™
(The remaining options are historical, obsolete, experimental, not yet standardized, or unassigned)

Main Information:

- Can increase header size by up to 40 bytes.

- Some options used only in the SYN/SYN-ACK Sequence.

- 32-bit MSS implies 4,294,967,296 but practice = 1460 Sourced from:

- Window Scale says 24-bits (but max scale = 14) https://en.wikipedia.org/wiki/Transmission _Control Protocol

TCP/IP Protocol Performance © Phil Storey 32

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Main Information:

- The initiator is the “client”.

- The timings in your capture can tell you where
the capture was taken.

- Client and server negotiate or make offers for
supported features.

- Intermediate devices (e.g., routers, firewalls)
can modify parameters as they pass through.

Main “Agreements”:

- Maximum Segment Size (MSS).

- Window Scaling supported? If so, Max Scale?
- Selective ACK supported?

Capture at client timings: SYN, ©, SYN-ACK, ACK

Capture at server timings: SYN, SYN-ACK, ©, ACK

TCP/IP Protocol Performance

CP 3-Way Handshake

Client Server
Client State Server State
Wait For Server
Passive OPEH: #
(]) Create TCB
Active Open: Create
TCB, Send SYN | | ™~ . :
v T Wait For Client
SYN)
SYN-SENT) R“"*-‘ [
Wait for ACK Receive SYN, ¥
to SYN Send SYN+ACK
At
SYN+ACK
+ Receive SYN+ACK, | [Wait for ACK
Send ACK to SYN
~_®
ACK
N v
i | Receive ACK
.

Figure 211: TCP “Three-Way Handshake” Connection Establishment Procedure

This diagram illustrates how a conventional connection is established between a client and
server, showing the three messages sent during the process and how each device transitions
from the CLOSED state through [intermediate states until the session is ESTABLISHED.

Sourced from:
http://www.tcpipguide.com/free/t TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm

© Phil Storey 33

http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm

Window Scaling

TCP Window Scale option is needed for efficient transfer of data when the
bandwidth-delay product is greater than 64 KB.

The Window Scaling option needed to be compatible with “old” TCP/IP
implementations — so had to keep the 16-bit “Window Size” header field. An
extended header “Window Scale” field is used.

By using the window scale option, the Receive Window size can be increased
up to a maximum value of 1,073,725,440 bytes (1 GB). This maximum occurs
when the scale factor is 14.

65536 * 2714 = 1,073,725,440
The scale is agreed in the TCP setup and never seen again in any packets.
Each side must remember the other side’s value. If you don’t capture the 3-

way handshake, then you have to guess the scale values.

Due to the “Multiplier”, variations in the Receive Window values can only be
made in “multiplier” units.

The RFCs dictate that a field value of 15 must be interpreted as 14.

Scale Factor Multiplier X 65536 AKA
0 1 65536 64 KB
1 2 131072 128 KB
2 4 262144 256 KB
3 8 524288 512 KB
4 16 1048576 1 MB
5 32 2097152 2 MB
6 64 4194304 4 MB
7 128 8388608 8 MB
8 256 16777216 16 MB
9 512 33554432 32 MB
10 1024 67108864 64 MB
11 2048 134217728 128 MB
12 4096 268435456 256 MB
13 8192 536870912 512 MB
14 16384 1073741824 1GB

Intermediate Devices Can Modify SYN / SYN-ACK

In this “contrived” example:
- The client supports MSS=1460 ; SACK and Window Scaling with scale 4 (x 16)
- The Cisco ASA FW reduces the MSS to 1360 but supports the other options
- The WAN Router doesn’t support SACK so turns it off. The MSS is already smaller than the MSS=1380 that it supports.
- The server supports MS=1460 ; SACK and Window Scaling with scale 7 (x 128)

- The WAN Router doesn’t support SACK so turns it off. It also reduces the MSS to 1380

- The Cisco ASA FW further reduces the MSS to 1360 but leaves the other options unchanged

Result:

- MSS=1360
- No SACK.

Both sides will use:

Cisco ASA

SYN

MSS=1460 ; SACK ; WScale=4

I
T -

I

I

I

WAN ,WV\ WAN

Result:

Window Scaling of 4
and 7 will be used at
the respective sides.

LAN 5

Firewall

10Gbps

What if you have a
device that turns off
Window Scaling?

MSS=1460 ; SAQK ; WScale=7

SYN-ACK

MSS=1360 ; SAGK} WScale=7

TCP/IP Protocol Performance

|
© Phil Storey

MSS=1380 ; SACK ; WScale=7 \

Maybe Not?

35

Common MSS Values

The diagram shows why 1460 is the maximum possible MSS.

https://tools.ietf.org/html/rfc879

This table lists some commonly observed TCP/IP packet payload values.
MSS |Comment
1460 [Maximum possible on Ethernet (max Ethernet payload is 1500, minus 40 byte TCP/IP header)
1448 |Maximum if TCP Timestamps are enabled (which use "extended" TCP Header fields)
1440 |Maximum with Ethernet and IPv6 (due to larger IP header).
1380 [Cisco ASA Firewalls commonly modify MSS to this as the SYN / SYN-ACKs pass through.
1360 [Cisco ASA Firewalls commonly modify MSS to this as the SYN / SYN-ACKs pass through.
536 ['Default" MSS. This must be used if not agreed in 3-way handshake. Can be carried on all
network types without needing fragmentation.
Used to be very common in Windows systems. Some systems will automatically drop packets to
this size if they get no response to full-sized "black holed" packets.
RFC 879

“Long established rule”.

Hosts must not send datagrams larger than 576 octets (-40 = 536)
unless they have specific knowledge that the destination host is
prepared to accept larger datagrams.

TCP/IP Protocol Performance

Protocol Data Unit Encapsulation

Application

!

TCP

l

IP

I

Ethernet Driver

Application Message

Application
Header
TCP Segment

TCP Application

Header Data

IP Packet (Datagram)

P TCP Application

Header Header Data

Ethernet Frame 1500-40=1460

Ethernet IP TCP Application Ethernet

¥ Header Header Header Data Trailer

Ethernet 4 Bytes 20 Bytes 20 Bytes Variable Length 4 Bytes

-
Transmission | 46 to 15008ytes .
Line
TCP/IP over Ethernet
3 linwei@cuc.edu.cn 11/10/15

© Phil Storey

Sourced from:
http://icourse.cuc.edu.cn/networkprogramming/lectures/Unit6 TCP.pdf

36

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://tools.ietf.org/html/rfc879

CP/IP Protocol Terminology

Where are we up to?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”
“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”
“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (O00)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey

37

Real World Performance Problem

A question appeared on the site “Ask Wireshark”.

https://ask.wireshark.org/questions/55972/slow-writes-even-
slower-reads-spanning-wan-to-netapp

The problem had been occurring for a long time, happened the
same way every time and nobody knew what was the cause.

askwireshark.org/questions/55972 /slow-wrtes-even-slower-reads-spanning-wan-to-neta

R
WIRESHARK

.

pp?page=18&focusedAnswerld=59542#59

B0 oo | [| [[aves | [(unanswers |

Search

® Questions O Tags

O Users

slow writes, even slower reads spanning WAN to Netapp

@ WinT workstation -» LAN -> ASA -> Cisco ASR -> DMVPN -= ASR -= Palo Alto -» Nexus -= NetApp

2

Cisco has cleared any real issues at the hardware level.

\We are experiencing the symptoms described in the title. This is not new, it predates me, and it happens at multiple
50/ | spoke sites in our DMVPM. Each vendor just seems to point the finger at the other with no real data reinforcing their point.

_

The symptom was that an SMB file transfer of the exact same file,
between the same user PC and the same NetApp file share
server, always took longer to download than to upload.

The Wireshark throughput charts showed that the throughput of
the download (SMB Read) versus the upload (SMB Write) varied
significantly and formed “sawtooth” patterns.

TCP/IP Protocol Performance

o]

Ml Wireshark 10 Graphs: 20160422-201933074_CAP_GTRT_Tun0_1st{1).pcap =, B =
— 2000
Write Test ‘ l :
—_—
— 1000
|- T I T I T T T | T T | T T 0
0.0s 205 4.05 6.0s
F 1 b

© Phil Storey

38

https://ask.wireshark.org/questions/55972/slow-writes-even-slower-reads-spanning-wan-to-netapp

Wireshark Experts Also Looked At It

Wireshark experts in Europe blogged about it.

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

\.

-
Note the multiple sawtooth pattern in the “H-to-C” case (SMB Read) with the 200 MB file taking
24 seconds. The “C-to-H” case had only one big sawtooth and took just 13 seconds to transfer
the same 200 MB file.

‘ Wireshark 10 Graphs: C_to_H_200MB ’

FR ST A
13 Seconds |
LAt
=
8 I
= L3?
&
g.ml -
A5
L o i il L i - m
o 435 g 13.5 1a Fro ki
Tierse (%)
ok o gt it a8 S = @EAL
Hame D play filber Colo Style ¥ Aaip W Pl Smeothing s
| Credis Grasted sl . Line SLATY Feeddy smbloredi. MHone
L | Credis Begquemed il bpeadae SUINY Feelf) smbd.credl. Mone
Lo TP anty ficp Line Biks Hune -
> |= Mose W drags v ehervel D0dms T | Tieme- of Sary Lo Soake Eesen
Saret A Cgry Ol Hedp

TCP/IP Protocol Performance

© Phil Storey

blog packet-foo.com/2016/10/trace-file-case-files-smb2-performance

PACKET-FOO.COM

ANALYZING NETWORK PACKETS SINCE 2003

Wireshark 10 Graphs: H_to_C_200MB

24 Seconds

[P
1

12

A
b /ﬂ/ w’
—y
' 5

18

Trace File Case Files: SMB2 Performance

We had an interesting question regarding SMB2 performance on the Wireshark Q&A
forum recently. Upon request the person asking the question was able to add a

couple of trace files (="capture” files). The question and a link to the traces can be

39

https://blog.packet-foo.com/2016/10/trace-file-case-files-smb2-performance

Wireshark “Server Response Time (SRT)” Values

Wireshark can calculate “server response time” values for transactions using some well known protocols.

The SRT for an individual transaction is measured as the time between the first client request packet to the first packet of the server’s response. It attempts to measure
the time that the server had to think about the answer before it began delivering the response.

For captures taken at the client end, these times also include the network RTT, because the times are measured as at the client.
That’s why the minimums here are 23 ms.

Why would the NetApp spend more time to process Read requests?

M Wireshark - SMB2 Service Response Time Statistics - C_to_H_200MB — O >
_ ~\ _ P
Index Procedure Calls Min SET (=) ﬁz‘lax SRT I[s]\ng SRT (=) Sum SAT (=) Procedure Calls Min SET (=) /ﬁax SRT (S:I\Qu.rg SRT (=) Sum 5RT (=)
1J[Nc".frit»s_- 4 0.023476 \ 0.139578 } 0.034736 } 0218944 Read 3203 0.023214 \ 2.590346) 0.717045 2206.693737
3 Tree Connect 5 0.023271 0241 0.023756 0.118779 Create 36 0022777 \Q0.038063/ 0.024458 0.880499
17 Setinfo 3 0.022929 0.023503 0.023180 0.069539 Cloze 19 0.023006 0.593961 0.077927 1.480622
1 Session Setup] 0.024037 0.034015 0.0286953 0372170 16 Getinfo 0.022870 0.023462 0.023187 0.370%%6
2 Read 10 0.023475 0.058345 0.028331 0283308 3 Tree Connect 0.023126 0.034187 0025018 0.173125
15 Motify 1 5678327 5678827 5.678827 5.678827 1 Session Setup 0.0235962 0.033103 0.028048 0.168288
0 Megotiate Protocol 3 0.023291 0023716 0.023570 0.070709 11 loctl 0.023048 0.023474 0.023252 0116260
1 loctl 3 0.023564 0.023670 0.023630 0.07088% 14 Find 0.0243%6 0.03550 0.029950 0.119300
16 Getlnfo 2 0.023046 0.023238 0.023180 0185437 0 Megotiate Protocol 0.023640 0.046455 0.031261 0.083782
14 Find] 0.02350 0.024459 0.023873 0.143238 13 Motify 10.026892 10026852 10.026852 10.0268452
5 Create 27 0.023063 0.035927 0.024210 0653679 17 Setinfo 0.023179 0023179 0023179 0.023179
& Close 14 0.022876 0.023425 0.023148 0324070 4 Tree Disconnect 0.348063 0.348063 0348063 0.348063
9 Write 0.023576 0.023576 0.023576 0.023576
Display filter: Enter a display filter ... | Apply
Display filter: Enter a display filter ...
Save as... Cloze
Sawve as...

TCP/IP Protocol Performance © Phil Storey 40

PC-to-NetApp Network

Minimum RTT = 23.3 ms

User, City-A Data Centre, City-B '

|
|

NetApp
File Server

7

Palo Alto FW

Va

Cisco ASA

1 Gbps
1 Gbps

? Gbps 10 Gbps

TCP/IP Protocol Performance © Phil Storey 41 of 67

Live Analysis of “C to H” & “H to C”

Will now examine the actual “pcap” files that were made available in the Ask Wireshark question.
First the “C to H” capture, where the client PC sends the 200 MB file up to the NetApp filer shared drive.

Then the “H to C” sample, where the client retrieves the same 200 MB file from the NetApp, copying it back to the local PC.

Plot the Flow Charts for each file transfer and examine where things went wrong.
- Plot the file transfer throughputs (we know that the WAN bandwidth is 1 Gb/s and the RTT is 23 ms). [BDP = 2.5 MB]
- Look at the individual SMB2 transactions.

- Look at the “Transactions in Progress”.
- Compare the SMB2 protocol behaviours.

C to H Full Flow (13 Seconds)

Relative Data Mbytes

__ sgrver window upper Data Sequence & Window Size vs Time
om0 12 seamenisinwincow | ... SMB2[TCP connection 1323435; PC-llarviand (cit > Netpo-a20GNAT(SV0_ 4 s
. Gota phcket bycriaken
“1data retransmitted
ack packet
—_ selective ack — D-SAck
—= window lower edge
count of duplicate acks
e ey oW
= ciont aata byies i flaht , . .)
g et fecate widow | (3) The server’s Receive Window keeps R
[server transmit window . .
200 1w T pace, staying about twice as large as the 2500
client’s Transmit Window.
(1) “Slow Start” ramps up to 138 KB but then something
happens to cause throughput to reduce by a factor of 4.
The client also goes into “Congestion Avoidance” mode, oo
150 1 . .
causing the ramp-up to become linear.
e 1700854 bytes
in packet seq 215485: data
(2) The linear ramp-up continues without
any further trouble all the way above 720 500
b KB when the file transfer completes.
Server receive window size increased
to 994,944 from 985,752 bytes
in packet seq 55419 non-data Ack
L1000
504
L500
0 : 54
728 978 bytes (535.7 segments) in client transmit window, in ﬂightl
Server receive window |4DB,DUB bytes (300.7 5 ts) in client transmit window, in flight
size: 33920 bytes
in packet seq 250: data |138.T20 bytes (102.0 segments} in client transmit window, in ﬂight|
| '\\1 b | 1 4 1 U
00:36:05 00:26:06 00:36:07 00:36:08 00:36:09 00:36:10 00:36:11 00:36:12 00:36: 00:26:14 00:36:15 00:36:16 00:36:17 00:36:18 00:26:19 00:36:20
MetData Chart of 13:10 27/0317 (C_to_H_2D0MEB) Saturday 011016

TCP/IP Protocol Performance © Phil Storey 43

Window Size Kbytes

TCP/IP Protocol Performance

Live Analysis

Now for the “live” analysis of the capture files.

NetData

visualising IT performance

PAL_SOLserver Overall Trans Times

-]
Transactipns
 Calt ap PAL UWasiaFileBFP S Ok —t
o a
& r——— i e—
—_—
E # Call 5p_PAL_UWasieFilsRegemie—0k .
5 15| % Sat a0 PA U mainie-0x e
Py H g | —
¥ Call ap_ PR slaP - O -1
= —_—
i — ——F
E a |=g f
3 ¥
=
o

14 476 trans

Clienis
& apnBel
& appfa 4

Server Data Sequence & Window Size vs Time

HTTPEITEP baitaeten 1 10007023 Rapihan i) - s 206 (5

0 70
Tyl
ET] FI il S B0
g P '.'I '_.—'—' E
= owhdr w2
e a
& "
= .
= mny
f;: i
: ng
= 3
"
]
053373 [CEEE] wIEm R IR 952508
Maritmn Ll Frichyy 1706
Fekr o Server Packet Timing
Seconds
W O] 5] 7 3] L I I = I T Stabiare par
-3 Fancinr anky arvEr
L :?‘ 4 200201142250 80
0 datw with Finel BRI
B :““"2":“# wwe-googie-anal: 80
y ‘chiani lnop ey Seraer
g @SS g akeme 80
rvrhq:mnun —
F rarpriea ragtire E": ; adulspamed; 00
¥ Fini by [l
14 D_ A pawpad com. A0
L] 8 aeTver
[- Al 5% g akema: A0
LLb
3 ’_L_, - bl 5+ 1818 g akamal. A0
LLb
i m ol 515 g akema: 40
L)
1 | geogietom: 40
FEreT] 3405 PR T] 234108 =0z
[Satinday | 703 THpan

© Phil Storey

44 of67

1000 -

server window upper
2 zegments in window
1 nermal data packet
I data packet overtaken
71 data retransmitted
00 ack packet
—_ =elective ack
— window lower edge
count of duplicate acks
server receive window
12 maximum-size segments
8004 == selectively acked
(i late or lost in transit
client data bytes in flight

C to H Flow — End of Slow Start

Client Data Sequence & Window Size vs Time
SMBZMCP connection 1323436 PC-Maryland (clt) -= NetApp-aZ0G-MNAT (svr)

(2) Apparent packet losses (we see retransmissions)
cause throughput to halve twice. The client also
goes into “Congestion Avoidance” mode, causing
the subsequent ramp-up to become linear.

Server receive sliding window
upper edge: 1,181,421 453
in packet 2eq 931: non-data Ack

7 F600

r 700

700
L500
w 6004
< (\ (3) The linear ramp-up begins at 25
. 54 .
& 500 packets per RTT and increments by 1 | t400
= - *[packet per RTT from then onwards.
o 2
400+ 4 Packet seq B01: data retransmitted
(1) “Slow Start” P ID: 0122 A reTx
Protdeol SMBTCP seq1,180,878,103 200
ramps up to 138 KB) Time 00:36:06.2535
300 E BE E‘EI‘ Lenggh: 1418 bytes (data 1360)
per round trip. j ction: 1323436:_146.138.7.60 -» 198.207.240.111
200 _&2 I
Server receive window 200
26 sizel 152,192 bytes
in packet 2eq 571: non-data Ack
1004
Server receive window E;}s,mu bytes (102.0 segments} in client transmit window, in flight
size: 70656bytes | . s

3erver receive window
gize: 33,920 bytes
in packet seq 252: data

in packst seq 340: data

35

e SRS R L 100

IL;'S,MD bytes (54.0 segments) in client transmit window, in flight

34

00:36:05.9
NetData Chart {C_to_H_200MB)

TCP/IP Protocol Performance

© Phil Storey

24 i} el 28
- 10 | £3,400 bytes (85.0 segments) in cllenttrﬂansmrt window, in ﬂ'ﬂ% !4?,600 bytes (35.0 segments) in client transmit window, in ﬂig%l
= 34,000 bytes (25.0 segments) in client transmit window, in flight] 0
00:36:05.95 00:36:06 00:36:06.05 00:36:06.1 00:36:06.15 00:36:06.2 00:36:06.25 00:36:06.3 00:36:06.35 00:36:06.4 00:36:06.45 00:36:06.5
Saturday 0110116

45

Window Size Khytes

C to H Flow — Zoomed-In

server window Upper Client Data Sequence & Window Size vs Time
350- | 1 e ata e SMB2/TCP connection 1323436: PC-Maryland (clt) -= NetApp-a20G-NAT (svr) 200
T data packet overtaken
"1 data retransmitted
___ack packet (2) This is confirmed by the receipt of
— =zelective ack
[i d | d . . .
+ Count of duplcate acks SACKs, indicating that the black packets
SEIVer receive windutw . d b f h -
12 maximum-ziZe Segments =
300 | 12 Mk sze seor were received before the green ones. be -2 N
s late or lost in transit) . 0 . = |
client data bytes in fight We’ll zoom-in to this area in the next slide. rackel seq B01- data rotansmitted
IP IDx: Mzz A reTx
Protocol. SMB2TCP seq 1,180578,103
Time: 00:36:06.2535
250 | (1) NetData has made these Length: 1418 bytes (data 1360)
Connection: 1323438: 145.133.7 80 -= 153 207 240111
I packets green to tell us that | 500
7 “« ” [[
they were “overtaken” on the ST r:?,ﬁ \
in packet seq 613 seleglive ack
2 500 way to the server. £ 950 brtoe (5.0 soambnter
] T
o % 8 o
a L400 8
p .. . =
= . (3) A further retransmission in the next ;
= Packet seq D62: data overtaken beyond monitor o
g 150 1 IP ID: 29976 A overTaken, beyondMon, followOn round tr|p causes the znd halving of the H
Protocol. SMB2/TCP =eq 1,180 913 263 . , . : w
Time: 00:36:06.2050 client’s Transmit Window. z
Round-trip: 258.4 mz =
Filed gap in 0.2 ms s | 300 §
Length: 1418 bytes (data 1380}
100 4 Connection: 1323435: _1 45.138.7.60 -= 193.20?’._240.111
Packet seq 617: data retransmitted
IP ID: Joozz A reTx
Protocol: SMB2/TCP =eq 1,180,838 383 L300
50 4 Time: 00:356:06.2303
Length: 1418 bytes (data 1360} J
Connection: 1323438: 145.138.7.60 -= 155 207 240 111
—
102,
=0 =
0 - % --- L 100
| 138,720 bytes (102.0 segments) in client transmit window, in flight /E 54
: | 73,440 bytes (54 .0 segments) in client transmit window, in ﬂig%‘
?38,400 bytes (85.0 segments) in client transmit window, in ﬂightl
|34,EIIJEI bytes (25.0 segments) in client transmit window, in flight | 0
00:36:06.2 00:36:06.205 00:36:06.21 00:36:06.215 00:36:06.22 00:36:06.225 00:36:06.23 00:36:06.235 00:36:06.24 00:36:06 245 00:36:06.25 00:36:06.255 00:36:06.26
MetData Chart (C_to_H_200ME) Saturday 011016
TCP/IP Protocol Performance © Phil Storey

46

i1z segments in

250 - 1 _normal data packet

server window upper

window

C to H Flow — Zoomed-In Further

Client Data Sequence & Window Size vs Time
SMB2TCP connection 1323436: PC-Maryland (clt) -= NetApp-a20G-NAT (svr)

i | da}{a retLaqsmiﬂed r 700
ac ACRE] . .
Esﬁhmmme (4) Just 1.2 ms after the first SACK, we receive ACKs to
1 ;gﬁ_ﬁfﬁj&ﬂ,‘gﬁ&i@ the whole set of original packets. None were “missing”
2 maximum-gize BEQMEN a
2 " selciely ke (2) In response to 5 such SACKs, the client at all - but were late. However, dozens of packets were
client data bytes in fight begins to retransmit the “missing” data. (and continue to be) retransmitted unnecessarily. 600
200
[
(1) The first SACK(s) to arrive from (3) But “normal” ACKs for the “missing” data
the server tell the client that 92 KB begin to arrive just 0.2 ms later. These can o0
1 ' 1 . . . I
(68 packets) didn’t arrive. only be ACKs to the original packets (which
w 150 l weren’t “missing” but just arrived late).
2z 103 104 - -
= - - Selective Ack (data received)
¥ in packet seg 704: selective ack
= \ 31,280 bytes (23.0 segments) o
i L 400 @
o / Selective Ack (data received) = E«
é calective Ack (diltﬂ received) | in packet seg 613 selective ack i
= in packet seq 604: selective ack 4,080 bytes (3.0 segments) @
1004 1,360 bytes (1.0 pegments) ; wm
4 2
Server receive window size increased 3 ! '§
— — to 304,640 from 149,376 bytes - — 300 =
_"“55'”9 (lost} data u:lentn'!ed in packst seq 704: selective ack i
in packet seq 676: selective ack 4
Wiszing (lost) daja identified 57,120 bytes (42.0 segments)
in packet seq 60§ selective ack -
92 480 bytes (580 segments) = 1 ;/
50 =7
Packet =eq 696: data retransmitted r200
Packet seq 671: data retransmitted IP 1D 30057 A reTx
P ID: 30053 A reTx Protocol SMB2ZTCP seq 1,180,336,287
Protocol. SMBZTCP seq 1,130,380,847 Time: 00:36:06.2312
Time: 00:36:06.2306 Length: 1413 bytes (data 1360}
Round-trip: 22.8 ms Connection: 1323435: 146.138.7.60 -> 198.207.240.111
! Length: 1418 bytes (data 1360)
0 L e Connection: 1323436: 146.138.7.60 > 198.207 24011 mmmenememmmmmmeem ol 100
: : = M onnection ////////////
Packet seq 615: data retfansmitted /,/,},f;/ﬁ////
IP ID: 30020 A r4Tx
Protocol:. SMB2TCP se§ 1,180,835 663 ﬁf;
Time: 00:36:06 2303 E
Length: 1418 bytes (dgta 1360} c
Connection: 1323438: 146 .138.7.60 —= 198.207.240.111 0
00:36:06.23 00:36:06.2302 ' 00:36:06.2304 ' 00:36:06.2306 00:36:06.2308 00:36:06.231 ' 00:36:06.2312 ' 00:36:06.2314 ' 00:36:06.2316

NetData Chart (C_to_H_200MB}

TCP/IP Protocol Performance

Saturday 01/10M6
© Phil Storey

47

—— client window upper
12 segments in window
71 normal data packet
“1data retransmitted
ack packet
—_ =elective ack T D-SAck
—— window lower edge
4 count of duplicate acks
—— client receive window
12 maximum-size segments
[=server transmit window

H to C - Full Flow (24 Seconds)

Server Data Sequence & Window Size vs Time
SMB2MCP connection 943717 PC-Maryland (clt) -= NetApp-a20G-NAT (svr)

(3) The client’s Receive Window keeps pace,
staying about twice as large as the server’s

Client receive window size reduced
to 2,594,304 from 2,606,592 bytes

r3000

. in packet seq 144425: non-data Ack
) . , Transmit Window — but is quite erratic. ' s
(1) “Slow Start” ramps up to 107 KB but then something
2004 +2500
happens to cause throughput to reduce. The server also
goes into “Congestion Avoidance” mode, causing the (2) The linear ramp-up “sawtooths” many times
subsequent ramp-up to become linear. and only achieves a maximum of 565 KB before
the file transfer completes. Here it drops from
150 4 Client receive window size reduced 416 tO 54 paCketS (3 llhalVingS”). L2000
® to 1,835,776 from 1,842 688 bytes
g in packet seg 18035: non-data Ack
s
g w
N\
1004 \;ent receive window size reduced / 1500 é
to 1,301,504 from 1,306,880 bytes ey z
in packet seq 926: non-data Ack z
Client receive window E,:
size: 1,166 848 bytes
J“ | | in packet seq 194395: data
ﬁ [‘ 1 I‘I - 1
504 o +1000
A1
I i
N _||. il
l Client receive window size increased
|IM i Lﬂ 538,904 from 509,952 bytes 585,760 bytes (416.0 segments) in server transmit winow, in flight
_ in packet seq 88668 non-data Ack
0 —— w ------- BT T T | . S I 500
312 800 bytes (230.0 segments)} in server transmit window , in flight
225,760 bytes (155.0 segments) in server transmit window in flight
C._Iieqt receive windT
: pa.clfe?g:f; :data,—\ - —— — M
"q |1D?|052 bytgs (78.7 segments) in server _transr:'m window, in ﬂlgl‘ltI 53,430 bytes (43.0 segments) in server transmit window, in ﬂight| |6,EDD bytes (5.0 segments) in server transmt window, in ﬂight| 73*::0"51:{? s (54.0 segments) in server transmit window, in ﬂight|
T T
0
00:38:20 00:38:22 00:38:24 00:38:26 00:38:28 00:38:30 00:38:32 00:38:36 00:38:38 00:38:40 00:38:42 00:38:44 00:38:46

NetDats Chart of 14:26 27/03/17 (H_to_C_200MB)
TCP/IP Protocol Performance

00:38:34
Saturday 011016
© Phil Storey

48

H to C Flow — End of Slow Start

—_ Server window upper Data Sequence & Window Size vs Time
2000 - _i ngg;:>gl S‘;E%E{W SMBZTCF connection 943717 PC-Maryland (clt) -= NetApp-a20G-NAT (svr) 78y 11400
e e ansmite Client receive window (2) Similar “retransmissions” occur here, a2
_ selective ack T D-SAck size: 1,236,224 bytes . . -
— window lower edge in packet seq 987 non-data Ack here and here, creating the Transmit 3
count of duplicate acks - - . “ ” . B
server receive window Window “sawtooth” pattern many times. 18 5
client tranzmit window o,
—— client receive window 31 "H - 1200
2500 4 | 12 maximum-size segments -
[=erver transmit window 25"'
- 2T
.-
J e 24
(1) Something happens to halt L] 5 000
the server’s “Slow Start” ramp
200011 up, cause throughput to reduce
and put the server into N
w . . 1 wn
2 “Congestion Avoidance” mode 800 .
=
X (the subsequent ramp-up — ¥
= . »
= 1500{ | becomes linear). @
= 2
= = L600 2
o =
35"‘34
75 -
1000 b
5 i
£7 Client receive window 400
ha zize: 455,424 bytes
in packet seq 2195: non-data Ack
500 |
g 3 L 200
1E|T,E|E-2‘}:-',rtes (78.7 segments) in server transmit window, in ﬂight|
BT
e
e a7 22 2T .
[V —1 I | A . < S e e s L, A, AN, A, AP, PR, A AP, N i W, L1 | e o i, s, 1
00:38:20.4 00:38:20.6 00:38:20.8 00:38:21 {.2 00:38:21.4 00:38:21.6 00:38:21.8 3822 00:38:22.2 00:38:22.4 00:38:22.6
NetDiata Chart of 19:01 0204/17 (H_to_C_Z00ME) Saturday 011016
TCP/IP Protocol Performance © Phil Storey 49

(1) The burst of 79 packets is
received normally at the client,

Data Sequence & Window Size vs Time

SMB2TCP connection 8943717: PC-Maryland (clt) -= Metdpp-a20G-MAT (svr)

H to C Flow — Zoomed-In Further

300 they are all in the correct order. § - 1400
(2) However, unnecessary retransmissions” I é—x—
occur, at the same time that the server .
250 halves its Transmit Window. They arrive in = 3’ 1200
just less than a full RTT.
4
F1000
200 - 5
Duplicate Selective Ack (retransm. unnecessary)
@ in packet seq 917 Dup-SAck
z 1,360 bytes (1.0 segments)
) —
=z . . @
B 150 - (3) The client sends D-SACKs in response to M
= the server’s unnecessary retransmissions. z
& L6500 £
o =
_.: Duplicate Belective Ack (retransm. unnecessary)
100 + H] in packet geq 861: Dup-SAck
_ % 1,360 bytés (1.0 segments) Server Winlow Upper
Packet seq 73b: data Packet =eq 825: data retransmitted ;} _2 gg’z%;gdiﬁtm%ﬂ 400
IP ID: 81087 A IP 1D 22408 A reTx 1 normal data packet
Protocol: SMB2TCP seq 3,750,867,081 Protocol: SMBZTCP =eg 3,750,865,793 71 data retransmitted
r Time: 00:38:20.9852 Time: 00:38:21.0070 . ackpacket
Length: 1418 bytes (data 1360) Length: 1418 bytes (data 1350) — e lower odge
501 Connection: 943717: 198.207 240111 = 145.138.7.60 | Connection: 943717; 198.207.240.111 -= 145.138.7.60 count of duplicate acks
Server receive window F200
client transmit window
—— client receive window
] 12 maximum-size segments
J]J [fr— [server transmit window
]
l ; _.J‘ — e
1 — I o e o N , _ by : : " 0
00:38:20.98 00:38:20.99 00:38:21 ao.21.01 00:38:21.02 00:38: 00:38:21.04 00:38:21.05 00:38:21.06
MetData Chart of 13:13 020417 (H_to_C_200ME) Saturday 011016

TCP/IP Protocol Performance

© Phil Storey

50

700 -

600

Hto C — Later in Flow

Data Sequence & Window Size vs Time
SMBZTCP connection 943717 PC-Maryland (clt) -= NetApp-a20G-MNAT (svr)

Packet seq B0723: data retransmitted

IP 1D 15308 A relTx

Protocol: SMB2TCP seq 3,814544,734 (+0)

Time: 00:38:31. 7078 (+0.13 ms)

Round-trip: 0.0 ms

Length: 1418 bytes (data 1350)

Connection: 343717 158.207.240.111 -= 146.138.7.60

500 2535, ’I

.
=
=1
:
ha
&
Tom

(1) More unnecessary retransmissions, spread across two
¥ round trips. The server halves its Transmit Window many

— times — from 250 to 8 packets. If only we could what was

happening on the other side of the local ASA firewall?

' (
B,

:)

Relative Data Khytes
(%]
=
=

200 -

Packet zeq BO709: data retranzmitted

P ID: 32934 A reTx]
Protocol SMBTCP seq 3,814,206,004 (-338,640) 1,360 bytes (1.0 segments)
Time: 00:38:31 6848 (-22.95 ms)

Length: 1418 bytes (data 1350}

Connection: 843717 183.207.240.111 = 145.138.7.60

A

N

=
340,000 bytes (250.0 =egments) in server transit window, in ﬂight|_

Duplicate Selective Ack (retransm. unnecessary)
in packet seq 80720: Dup-SAck

Client receive window
size: 1,267 455 bytes |
in packet seq 80737 non-data Ack

server window upper
client window upper
segments in window

(2) The client again sends D-SACKs in response
to the server’s unnecessary retransmissions.

—|h3|

normal data packet

71 data retransmitted
o ackpacket
_ selective ack _— D-SAck
— window lower edge
count of duplicate acks

SEMver receive window
clignt transmit window
— client receive window

-800

FG00

-400

1200

0

R 12 maximum-size segments
[server transmit window
02 o Sy) : .
00:38:31.66 00:38:31.67 00:28°3168 00.38.31.60 0038317 0038:21.71 00:38:31.72 00:38:31.73 00:38:31.74 00:38:31.75 00:38:21.76 00:38:31.77 00:28:
MetData Chart of 19:40 0200417 (H_to_C_200ME) Saturday 011016
TCP/IP Protocol Performance © Phil Storey 51

3178

r 1600

- 1400

-+ 1200

-1000

Window Size Khytes

PC-to-NetApp “Root Cause”

Root Cause: Out of Order (O0O0) packets are «— Minimum RTT = 23.3 ms .
triggering SACKs, which in turn trigger | .-- Gor gy - e S _
unnecessary packet retransmissions. ' ' !

Due to the retransmissions, the connection WA SN F,'I“e;App
. . . T ile Server
goes into “Congestion Avoidance Mode” where Router Router .
. . . . WAN : o

the sender halves its Transmit Window (often < \CK»\/“)) AN \) 8 é LAN

. . P4

é : 1Gbps : = 10Gbps

linear manner. O : : <

| i —

Packets are going Out of Order somewhere between

We can also determine that the OO0 events the local Cisco ASA firewall and the NetApp Filer

occur on the WAN side of the local ASA firewall.

A

multiple times) and then ramps it back up in a

The OO0 events occur more often during the
“H to C” file transfers, that is, when the large
data flow is from the NetApp to the PC.

Packets from the NetApp arrive at the ASA “Out of Order”

a

ASA buffers them and issues SACKs back to the NetApp

\ 4

The original “missing” packets arrive at the ASA “Late”

a

ASA releases all the buffered and “late” packets in the correct order — G

Client ACKs all the received data

v

NetApp unnecessarily retransmits packets (responding to ASA’s SACKs), ASA sends them through.

<

Client sends D-SACKs due to the duplicated packets >

D-SACKs trigger more unnecessarily retransmitted packets from the NetApp

a

TCP/IP Protocol Performance © Phil Storey 52

PC-to-NetApp — Subsequent Testing

Minimum RTT =22.5ms

More Tests: Laptops were taken to
different sites and connected directly tothe | -~ GeerGya =TT
remote office WAN routers.

Data Centre, City-B

NetApp

The same “C to H” and “H to C” file transfers

WAN | WAN — File Server
to/from the NetApp were performed. Router ’M\ Router >
. WAN : [
< U N b g ¢
The next slides plot the flows achieved 3 e ! :ou 10Gbps
during these tests. S =

No OOO events were seen during these tests
and throughput both ways was as good as it
could be.

Therefore, the packets must be
going Out of Order somewhere
between the local Cisco ASA firewall
and the local WAN router!!

TCP/IP Protocol Performance © Phil Storey 53

250 4

200 A

150 A

Relative Data Mbytes

100 A

504

server window upper
client window upper
segments in window
normal data packet
data packet overtaken
ack packet
window lower edge
count of duplicate acks
server receive window
client transmit window
client receive window
12 maximum-size segments
[=erver transmit window
— - client Kbps
=erver Kbps

.‘.|]

e

01:30:12

= !
01:30:12.5
NetDsta Chart of 16:50 20/03/17 (0206L2LGTNRouter-ORRouter)

TCP/IP Protocol Performance

]

“Hto C” & “Cto H” — Clean, Full Flows — 2.5 Secs

B,

Data Sequerce, Window Size & Throughput vs Time

Function:
Connection: 18274 in 140585: 1.1.12-=1122

Read - CrChg1 grnt 1; 200 bt

Transmit Windows (and throughput) are
more “rectangular” and constant.

|2,E-D4,44D bytes (1841.5 segments) in server transmit window, in flight

i1

10 10

©01:20:13

01:30:13.5

i
]
i
!
i,
-~
-
ST T W, S | I ! I
01:20:14.5 01:30:15 01:30:15.5
Tuesday 07/0217

© Phil Storey

3 3

CE

SMBTCRzemnnection 140585: NETTESTY (clt) -= 114248\ | -
T padap! -
.
A -
. e o " -
N) 3
Client receive window s Server receive window
size: 16,776,960 bytes “ size: 16,776,960 bytes
in packet seq 40488: non-data Ack s in packet seq 185841: non-data Ack
Packet zeq 19767 3: data
IP ID: 8655 A
Protocol. SMBZ/TCP =seq 4,161,470 378
Time: 01:30:17.0528
| Frame:; mip-101:30:17.0519
Packet seq 113841 data [: EU"'”;‘“'P: :g;g‘i data 835201 |
IPID: 5347 AP endBlock ALY ({5 s loala
Protocol: SMBTCP seq 1,836,749,452] Cunnecthn. 140585 11221112
Time: 01:30:14.0355 !
Frame: m1 p-101:30:14.0347 z255 !
Round-trip: 0.0 me JI
Length: 3982 bytes (data 340)

l/LIS,‘IZD,ME bytes (5870.9 segments) in client transmit window, in ﬂight|

3 3 3

3

T 013016

01:30:16.5

01:30:17

3____- i
01:20:17.5

01:30:18

54

-18 900 i
I

I

I

16 f800

I

I

I

L14 700

L1z feo0
w

L @

102 1500 4
= =
= =
I z
o o
‘; o
5 =

le < t400°
=
Lg L 200
L4 | 200
L2 L 100
SR Lo

“Cto H” — Capture Artefacts

Some things seem “odd” here? These are the “artefacts” of running the packet capture inside a PC or server. We are seeing the “packets” as they pass between the

TCP layer to the IP layer inside the machine. Itis IP’s job to chop the data into the MSS sized packets that end up on the wire. Data can flow internally from TCP to IP
much faster than the wire speed. At this stage in the flow, the transmit window is just being “topped up” 1 MB at a time.

Lastly, if IP has 8 MB of data waiting in its Transmit Buffer waiting to get out on the 1 Gb/s wire, it will take 66ms for the whole 8 MB to leave the local machine.

Client Data Sequence, Window Size & Throughput vs Time

- SMB2TCP connection 140585 METTEST (clt) = 1.1.1.2 (svr)
14 - server window upper 40
12 =segments in window
1 normal data packst /__ Throughput of 8 Gb/s?
L ack packet
I, — window lower edge ||
y sEerver receive window ' L35
13 F 12 maximum-size segments k.
) client transmit window ,
I | — - client Kbps | | |
1 | 1 'I 1
L., [.|| F30
121 ! ! Hy
o “Stacks” are ~1 MB and o] |
I [64 KB packet? “,
@ ;oo only 9ms apart? o | L 25
=114 . ' 5108 '
= I . A I
m Server receive window | N |
S size: 16,776,960 bytes Jr""] :;EI'EFH e !52\405_ data ' I' F20
o TSR R SR [- Protocol SMB2TCP seq 4,107635,738 L
& 101 o ; 10z, | Time: 01:30:16.5610 =
o . ' , ' Frame: m1 p-1 01:30:16.5601 2255 \
= | l] I'. 1 Round-trip: 66.6 ms 4 r19
: | ' . / Length: 53978 bytes (data 63920) .
I . I ! 4 : oo, T 1.22-=T1.1.1. L
91 " aagdl : l RTT of 66 ms? ' ' ' , -
I =", { | . . | L10
1 |] | 1 | 1
| . ! 5 ! . i |
v I| T a 1 II 1
gl I . ! | I . .Il {
|' | |' : : | / | B
. :I . E,EEB,S&A# bytes (6101.7 segments) in client transmit window, in flight . '
[. | | [] £ |
? I T |I T T ll I" T T r T |l T -Ilr T II T D
01:30:16.528 01:30:16.532 01:30:16.536 01:30:16.54 01:30:16.544 01:30:16.548 01:30:16.552 01:30:16.556 01:30:16.56 01:30:16.564
MetData Chart of 15:58 3000317 (0206L2LGTNRouter-OR Router) Tuesday 070217
TCP/IP Protocol Performance © Phil Storey

Window Size Mbytes

55

Data Rate Ghps

“Hto C” —Same Timeframe

In the flow from the server, we see all the “packets” as they have arrived from the wire.
The timeframe here is about the same as the last slide (~36 ms) and we same about the same data volume in the period (~4 MB) but it looks much smoother because
each vertical “step” is now just 1360 bytes. The server’s Transmit Window of 2.5 MB is enough to keep the 1 GB * 23 ms path full.

7 Slent window upper Server Data Sequence, Window Size & Throughput vs Time
) 71 normal data packet SMB2/TCP connection 140585: METTEST (clt) -= 1.1.1.2 {svr) : i i
7000 ack packet Throughput is the 40 pi00o;
— window lower edge |
—— client receive window expected 1 Gb/S .
12 maximum-size segments
G500 4 - | =zerver transmit window Lggg |
server Kbps L 35 !
- |
—
6000 - e Laon |
— 30
5500 - =T L 700
“Steps” are 1360 bytes
__a1 1360 byte packet [05 o
-~ and very close together. _”ﬁ < 2 600 o
=, — = o
v TF'-T'T Packet seq 93843: data = =
m Client receive window ?r,._--""' IP 1D 20037 A @ ®
S 4500 - gize: 16,776,960 bytes e Protocol: SMBZTCP seq1,813,123,532 | F20 .M 500
@ in packet seq 89620: non-data Ack _n—.r-_r" Time: 01:30:13.8181 n o
= ; i i —F"'" Frame: mi p-1 01:30:13.8173 255 E m
o 40004 T = Round-trip: 0.0 ms = 400 3
; —n! " Length: 1418 byteg (data 1360} L15 g
— Connection; 140585; TT.T. T2
—m ; ;
o
3600 — L2300
_".--T F10
3000 - i 200
2500 4 _I,.ﬁ"' E.43T.ﬁﬂ bytes (1792.3 segments) in server transmit window, in ﬂight| L4100
(Tea 1782 1781 I ! T 1845 | ! '
2000 // 0 Lo
01:30:13.796 01:30:13.8 01:30:13.804 01:30:13.808 01:30:45 812 01:30:13.816 01:30:13.82 01:30:13.824 01:30:13.828
MetData Chart of 20:53 300317 (0208LZLGTNRouter-ORRouter) Lesday 07/02M7
TCP/IP Protocol Performance © Phil Storey 56

2504

2004

150 4

server window upper
client window upper
segments in-window

i

normal data packet

ack packet

—— window lower edge
count of duplicate acks
server receive window

client transmit window

— client receive window

12 maximum-gize segments

[=erver transmit window

— - client Kbps

— - server Kbps

“Hto C” & “Cto H” — One Location — 75/90 Secs?

Data Sequence, Window Size & Throughput vs Time
SMB2/TCP connection 140589; NETTEST (clt) == 1,1.1.2_(svr)

(1) These flows were

supposedly identical!

“surprisingly” much slower — due

to Receive Windows of just 64 KB.
TCP Window Scaling was disabled,
even though the test laptops were

Relative Data Mbytes

100 4

504

01:37:40

Clignt receive window
size: 65,280 bytes
in packet seg 1748 non-data Ack

01:37:50

MetDiats Chart (0208LZLGTHRouter-ORRowter-2)

TCP/IP Protocol Performance

F10

F15

© Phil Storey

e o] 11
— e = = — e S R S
- . y Al
F500
l‘ |I Packet seq 195389: data 1
| \ IP I 29445 AP endBlock Ly
. [Protocol. SMBZTCP seq 1,393,003,577 ;' |
| ‘ Time: 01:39:50.5081) !
! ! Frame: mi p-1 01:39:50.5073 z255 7 II
! II Round-trip: 23.3 ms . i L4000
II , Length: 53578 bytes (data 63920) £ .
.o Function: Write - CrChg1 rgst 0; 65536@125435904 200 b .'I 1
Packet seq 89764 data Lo Connection: 361 in 140588: 1.1.2.2 = 1.1.1.2 ! -
IP ID: 5056 AP D " : " | |
Protocol: SMBZ/TCP seq 3,752,158 462 [, ' o
Time: 01:38:27.8052 o : I 2
Frame: mi p-1 01:38:27 5043 2255 [. :I =
Round-trip: 0.0 ms. ' :I ! N ~
Length: 1418 bytes (data 1360) ll | ! | 100 o
Connection: 140589 1.1.1.2->1.122 | ! . i I3}
: ' z
1 o
1 =}
| | £
. '] E=
. . !
Why this period of : i
'l 1
extra slowness? i - |
Packet seq 1584 | |
P ID: 29620 A | - I| (200
Protocol: SMBZTCP s ™ ! \
Time: 01:38:56.8779 N " ! |
Frame: mi p-1 01:38:55.8770] :1 [
Round-trip: 22.8 ms .)] Y
Length: 175 bytes (data 117) o !
Function: Read - CrChg1 rgst 0; 85535@ 1909 - l.
Connection: 26439 in 140588 1.1.22-=11.1.2 |
--- r----r 100
Y
l
Server receive window Fx. I|
size: 85,280 bytes | 65,280 bytes (45.0 segments) in client transmit window, in flight | '
. |in packet seqg 178345 non-data Ack |
R ||| H B | | ot I,' 1 1 1 1 l, 0
01:38:20 01:38:30 01:38:40 01:38:50 01:39:00 01:39:10 01:39:20 01:39:30 01:39:40 01:39:50 01:40:00 01:40:10 01:40:20 01:40:30 01:40:40
Tuesday 07/02M17

57

Data Rate Mbps

“Cto H” = Zoom-in to Extra Slow Period

server window Upper Data Sequence, Window Size & Throughput vs Time
S g';eg";;;gdmnm SMB2/TCP connection 140589; NETTEST (clt) -> 1.1.1.2 (svr) . s s sasasan. 600
1 normal data packet
ack packet Packet zeq 204640: data
— window lower edge P ID: 13248 A
Count of duplicate acks . Protocol: SMB2/TCP seq 1,457,940,857
client transmit window For some reason, we went through a period Time: 01:40:27.2907
—— client receive window ", . i .40:27 2889 z255
304 |5 Sorver fonamivindon. | where the RTT got longer and longer, dramatically ——([Rounciip: 234 ms ’
— - client Kbps . H Length: 1418 bytes (data 1350}
— - server Kbps , SIOWIng the thrOUghpUt down to 5 MbpS, before Connection: 14058% 1122 -»>111.2 500
N reverting to the normal 23+ ms. K I
N s
. .
25 1 L B, /
" Packet seq 204349: data
. IP ID: 11663 A
. " Fx\ Protocol: SWMB2/TCP seq 1,455 247 817
Time: 01:40:25.74138
" Packet seg 203951: data . -40:25.7410 2255 F400
2 ap bl IP ID: 9548 AP endBlock Roundtp: 112.1ms)
= N Protocol: SMB2TCP seq 1,453,057,097 gt : : 2s (data 12240)
= : = OE LTS Connection: 140589: 1.1.2.2 ->1.1.1.2
= ~ Erames. mip-1.01:40:21.3684 z255 "
o N Packet seq 203360: data Roeund-trip: 94.5 ms
2 ~ . 5482 AP . endBlock, followOn, ddRtn Length: 83978 bytes (data §3920)
= ., SMBZ/TCP seq 1,448,032,857 Function: Write - CrChg1 rgst 0; 65536@ 185401 344 200 bt
- 15 4 . 01:40-16.2305 Connection: 361 in 140589: 1122 -=1112 |
o ey
1.01:40:18.2266 z255 . 200
B C . /
Packet seq 202764: data Length: 50378 bytes (data 50320} Py
IP 10 3348 AP endBlock Function: Write - CrChg1 rgst 0; 55536@ 181403548 200t i
Protocol| SMBZTCP seq 1,444 814,777 Connection: 351 in 14058%: 1.1.22 -=1.1.1.2 s
104 Time: 01:40:11.9013 .
E -40:11.9004 2255 /
E Round-trip: 64.7 ms -
. ength: s (data 63920) B S I
F Function: Write - CrChg1 rgst 0; 65536@ 177274880 200.td = . ! L
Packet seq 201855: data Connection: 351 in 140589; 1.1.2.2 = 1.1.1.2 Eal Kl 200
IPID: 1527 AP ., endBlock, followOn, ddRtn =L
5 Protocol: /SMB2TCP seq1,438918537 -
01:40:05.9636
: .40:06.9627 2255
C Round-trip: 23.5 ms
ength: 5 es (data 57120)
Function: Write - CrChg1 rgst 0; 85538@171311104 200 &t
Connection: 361 in 140588 11.22-=111.2
i S e e e e e e e et +100
Server receive window
65,280 bytes (48.0 segments) in client transmit window, in flight size: 65280 bytes
in packet seq 203272 data |
1 0
01:40:04 01:40:06 01:40:08 01:40:10 01:40:12 01:40:14 01:40:16 01:40:18 01:40:20 01:40:22 01:40:24 01:40:26 01:40:28 01:40:30
NetData Chart (020612l GTNRaouter-ORRouter-2) Tuesday 07/02M7

TCP/IP Protocol Performance

© Phil Storey

58

Window Size Khbytes

F16

L14

Data Rate Mbps

CP/IP Protocol Terminology

Nearly All Done?

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”
“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”
“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (O00)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 59 of67

SMB2 Transactions

The following slides show the transaction Performance Charts for both the
“Cto H” and “H to C” file transfer tests.

The timing detail of each SMB2 transaction is displayed.

The reason for the different “SRT” times from Wireshark will be explained.
We'll see that the NetApp Filer is not at fault in any way.

Do we have time to discuss them?

0144

/(C

to H” - SMB2 Transa

ctions

NetApp-a20G-NAT Overall Trans Times & Transactions in Progress

CUnnectlUn 1237? in 1323436. 146. 133 7.60 > 198.207.240-T11; 445

Response: 84 by'tes

95 from 00:36:06.0883 to 00:36:06.2065

Each SMB2 “Write” sends a 64 KB block of data. As
the available TCP throughput ramps up, the time to
send each 64 KB block (LHS scale) decreases.

SMB2/TCP ‘Write Signed: -- OK
§5536@131072 200.txt CrChg 1 rgst 0 repChg 0 grnt }-msglD 41

113 from 00:36:06.6749 to 00:36:06.7418

Trans: SMB2/TCP Write Signed: -- OK

Diata: G5536@1245184 200.txt CrChg 1 rgst 0 repChg 0 grnt 1 meglD 58
Connection 12877 in 1323436: 146.138.7.50 -» 198, Z07.240.111: 4453

| Clignt; PC-Marviand 0
Request: 65.652 Kbytes 0.0430 secs

[Server: Bp-

Response: 24 bytes

Key:

-+

Transactions

Time Bands

B data packets lost

Transaction affected by a network abnormality

+ Create: -Error ALREADY_EXISTS
m Read Signed: --OK
+ Write Signed: -OK

#* Create: requested lease-level OplLock--created (2) granted lease-level OpLock

As the available TCP throughput ramps up, the
number of 64 KB blocks able to be transmitted at
once (per RTT) increases.

The RHS scale is “Transactions in Progress”.

9%0 from 00:36:12.2932 to 00:36:12.3283
SMB2/TCP ‘Write Signed: -- OK
B55368@53936128 200.txt CrChg 1 rgst 0 repChg 0 grnt 1 msglD 869

Key:
Trans:
Data:

Cunnedlun 1287Ain 1323436: 145.138.7.60 -= 193.207.240.111: 445

I

i

ro0

45

40

F35

30

F25

Trans in Progress

r20

0

H
—HE |
012 o
By,
Key:
Trans:
Data:
Request
erver:
0.10 4
+
w
o
G 0.081
5]
(]
w
£
= by
@
I
C
[s]
7006
]
i H
0.04 1
s
0.02 4
0.00 |
00:36:05 00:36:06

00-36:07 00:36:08

NetData Chart of 15:56 27/03/17 (C_to_H_200MB)

TCP/IP Protocol Performance

00-36-09 00:

3610 003611

00:36:
Saturday 01/10/16
© Phil Storey

12

003613 003614 003615

003616

003617

003618 003619

61

00:36

20

Understanding Performance Chart Transaction Symbols

of the horizontal line).

NetData measures and reproduces individual application layer transactions. The “Performance Chart” plots each transaction as a horizontal line that
represents the overall transaction time. Symbols within the line indicate timings of sub-components of the transaction. The symbol colour represents
the server (or client) and symbol shape represents the transaction type.

The X-axis is time-of-day and the Y-axis is transaction time. A transaction is plotted at a height that represents the overall transaction time (full length

The green, yellow and blue colours are used consistently whenever these times are represented on the various charts.

First packet of client request.

First packet of server response

Last packet of client request.

Last packet of server response

Request Duration Server Time

More Complex TCP Selective ACKs

© Philip Storey

62

Understanding Performance Chart Transaction Symbols

The length of the horizontal line before the coloured symbol represents “Server Time”.

Transactions that have been affected by a “network abnormality” get a pink square around the symbol.

Single packet client request First packet of server response Last packet of server response

Server Time \ J

\ s | |

| [Resporse ouaien_|

Extremely common.

If the server response is also small (or relatively fast), then the coloured symbol will be at the very end of the line.
In this case, the whole transaction duration appears to be “Server Time”.

K

Server Time L

TCP/IP Protocol Performance © Phil Storey

Transactions

“Hto C” - SMB2 Transactions

NetApp-a20G-NAT Overall Trans Times & Transactions in Progress

When receiving, the client asks for ~125

3.0 -1 Transaction affected by a network abnormali . - r 140
+ Read Signed: - OK Y v Time Bands blocks of 64 KB at a time. The server must
. glee Disé?gnedi —OK " data packets fost gueue these requests and handle them
ose: - . ..
» Create: —opened (1) sequentially, giving the appearance of long
“Server” (Wireshark “SRT”) times . /]
[L&\ \ F120
254 Key: 1215 from 00:38:31.6809 to 00:38:34 2712
Trans: SMBZ2/TCPF Read Signed: -- OK
Data: G5536@T07 13344 200.1xt CrChg 1 rgst 0 rspChg 0 grnt 1 msgll 1139
Connection 23629 in 543717: 145.138.7.60 -= 198.207.240.111: 445
Client: PC-Maryland 0.0016 zecs
Reguest. 117 byvtes
Server: Nettpp-a20G-NAT 2.5818 secs]
Response: §5.520 Kbytes 0.0056 secs
I AHTRTINRAL
2.0+
[4]
2
S F80 @
[iH] [1h]
2 o
© =
£ | o
= 15 c
3 p
S &
& 60
[iH]
4
1.04
F40
There are 3,227
0.5+ transactions on
this chart. F20
O'O 1 T T T T T T T T T T T T i“‘ ” T O
00:38:20 00:38:22 00:38:24 00:38:26 00:38:28 00:38:30 00:38:32 00:38:34 00:38:36 00:38:38 00:38:40 00:38:42 00:38:44 00:38:46 00:28:48
MetData Chart of 15:49 27/03/17 (H_to_C_200MB) Saturday 01/10/16 3,227

“Hto C” & “Cto H” — Clean SMB2 Transactions

1.1.1.2 Overall Trans Times & Transactions in Progress

0.20 - - 140
When the flows are
optimum, there’s a co-
0.18 1 incidental symmetry of
reading and writing. 120
0.16 -
- 100
0. 1424
Transactions
- + Read: -OK
o124 m Write: —OK
S + Set Info: file (1) info-class 4 {basic)-0OK L gp @
& % Close: -OK o
@ ¥ Query Directory: info-class 37 (ID both directory)-0OK g’
E i o
= 0.10 =
b w
w C
| o L]
a 160 &
8 0.08
)
_><
By,
0.06 . a0 a0 Key: 3901 from 01:30:16.0054 to 01:30:16.0743
%‘;5: éﬂﬁﬂgj&?fﬁuﬁﬁﬁ?&; e -[r:-rini g Hggé_£$;3xgtzeu:u ;t?:xcn 1 rgst 0 repChg 1 grnt 1 meglD 3893 40
Data: 65536@ 16908288 200.txt CrChg 1 rgst 0 rspChg 1 grnt 1 msglD 289 sta: E5536@<1943 s e e
Connection 18274 in 140585: 112221112 445 Connection 2223 in 140585 1.1.2.2-1.1.1.2: 445
0.04 4 Client; NETTESTH 0.0000 secs E""*‘"t- _ NETTESTH 0.0003 secs
- Reguest 117 bytes equest. §5.852 Kbytes 0.0000 secs
SEMVET 1112 0.0670 secs Server:) 1.1.1.2 0.0683 secs
Response: 65520 Kbytes 0.0005 secs E‘?E_’E"'?'j?'?'_ _3_4_?'-"_1_'3_5 __ L0
0.02
-Le There are 6,452
transactions on
this chart.
[}'D[} T T T T - 1 T T T T T T T
01:30:12.5 01:30:13 01:30:13.5 01:30:14 01:30:14.5 01:30:15 01:30:15.5 01:30:16 01:30:16.5 01:30:17 N[H 230:18
MetData Chart of 19:28 30/03/17 (0206L2LETNRouter-ORRouter) Tuesday 07/02/17

Receive Window Closures

The following slide is just a nice example of a file transfer flow that contains several Receive
Window “closures” (or what Wireshark calls “Zero Window” events).

The flow was captured at the receiving end of a low speed WAN that had WAN Accelerators
deployed at each end.

The throughput being achieved by the WAN link was only about half of the expected capability.
The vendor who managed the WAN link and WAN Accelerator devices was claiming that the
receiver’s many window closures were the cause of the poor throughput performance (the WAN
Accelerators logged such things). Therefore, they wouldn’t investigate the poor WAN throughput

until we made the window closures go away.

Were they correct?

Receive Window Closed/Opened

In this example, the Receive Window is closed (dropped to less than one MSS size), the sender stops transmitting but “catches up” once the Receive Window is re-
opened (to 64 KB). The window closures do not, therefore, affect the overall file transfer throughput or time. A local WAN Accelerator did not pass the window closures
through to the sending side — but rather, let packets continue to flow over the low speed WAN, to be buffered in the local WAN accelerator and released at local LAN

speed when the Receive Window was re-opened. Thus, the overall time for the file transfer (throughput) was not affected by the window closures.

TCP/IP Protocol Performance

Receiver drops it Receive The flow stops, but catches up Window is filled during the “catch Window constantly
Window to less than one MSS. when the window is re-opened. up” times but not otherwise. open here.
Client Round-Trip Times, Data Sequence, Window Sjze & Throughput
20 - ConDinTCP connection 5 539:_(|::It}—:~ 70 100, 0.10
e 14 T I
18 |'I i - ; -a0 - 009
| 1| 5 Server receive window i § L&D |
| zize: 65,535 bytes f - |
16 + . "~ “|in packet seq 584505: non-data ‘ -80 r0.08 8
“ 5
' E
14 - r a0 Lo Loor T
w ! w 2
z ! 2 w o
12 ' f\ & (B0 o (006w
= { ! " -40 = o
= | h z @ 2
. B HolEp = |
E 10 : N D 50 @ 0.05 =
z : 130 2 = 2
= 4 = m o
% 8 e i Z 40 a 0.04 I::
o Rl ; = =
(=]
6 1 ™, [server window upper L20 30 r0.03 o
' ! segments in window =
b , normal data packet o
4 - N 1 window lower edge L20 L0.02 o
3 . : - count of duplicate acks
. Server receive window # W round-trip time data=Ack L10
5 size: 1,135 bytes s&rver receive window 10 0.01
1 - e 12 maximum-gize segments 3 M.
A in packet seq 901585: non-data client transmit window
b — - client Kbps
V- - f i - S : i i - : - mt | O - L0.00
01:00:28.8 01:00:29.2 01:00:29.6 01:00:20 _ 01:00:30.4 01:00:20.8 01:00:31.2 01:00:31.6
M=tData Chart of 15:08 27005012 (DMFMI-1) Friday 21/09M12
© Phil Storey

CP/IP Protocol Terminology

All Donel!

“Acknowledgement (ACK)” “Duplicate ACK” “Delayed ACK” “Partial ACK”

“Fast Retransmission” “Retransmission Timeout (RTO)”

“Round Trip Time (RTT)” “Bytes In Flight” “Bandwidth Delay Product (BDP)”

“Receive Window” “Transmit Window” “Window Scaling” “Long, Fat Network (LFN)”
“Slow Start” mode “Congestion Avoidance” mode

“3-Way Handshake” “Maximum Segment Size (MSS)”
“Selective Acknowledgement (SACK)” “Duplicate SACK”

“Out of Order (O00)”

“Window Closure” aka “Zero Window”

TCP/IP Protocol Performance © Phil Storey 68 of67

T
WIRESHARK

TCP/IP Protocol Performance

Phil Storey

Phil@NetworkDetective.com.au

www.NetworkDetective.com.au

au.linkedin.com/in/philipstorey3

@PhilStorey24

www.youtube.com/c/NetworkDetective

ask.wireshark.org: @philst

© Phil Storey

69

mailto:Phil@NetworkDetective.com.au
http://www.networkdetective.com.au/
https://au.linkedin.com/in/philipstorey3
https://twitter.com/PhilStorey24
http://www.youtube.com/c/NetworkDetective
https://ask.wireshark.org/users/26122/philst

